Introducing Brain-like Concepts to Embodied Hand-crafted Dialog Management System
- URL: http://arxiv.org/abs/2406.08996v1
- Date: Thu, 13 Jun 2024 10:54:03 GMT
- Title: Introducing Brain-like Concepts to Embodied Hand-crafted Dialog Management System
- Authors: Frank Joublin, Antonello Ceravola, Cristian Sandu,
- Abstract summary: This paper presents a neural behavior engine that allows creation of mixed initiative dialog and action generation based on hand-crafted models using a graphical language.
A demonstration of the usability of such brain-like architecture is described through a virtual receptionist application running on a semi-public space.
- Score: 1.178527785547223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Along with the development of chatbot, language models and speech technologies, there is a growing possibility and interest of creating systems able to interface with humans seamlessly through natural language or directly via speech. In this paper, we want to demonstrate that placing the research on dialog system in the broader context of embodied intelligence allows to introduce concepts taken from neurobiology and neuropsychology to define behavior architecture that reconcile hand-crafted design and artificial neural network and open the gate to future new learning approaches like imitation or learning by instruction. To do so, this paper presents a neural behavior engine that allows creation of mixed initiative dialog and action generation based on hand-crafted models using a graphical language. A demonstration of the usability of such brain-like inspired architecture together with a graphical dialog model is described through a virtual receptionist application running on a semi-public space.
Related papers
- Prompt2DeModel: Declarative Neuro-Symbolic Modeling with Natural Language [18.00674366843745]
This paper presents a pipeline for crafting domain knowledge for complex neuro-symbolic models through natural language prompts.
Our proposed pipeline utilizes techniques like dynamic in-context demonstration retrieval, model refinement based on feedback from a symbolic visualization, and user interaction.
This approach empowers domain experts, even those not well-versed in ML/AI, to formally declare their knowledge to be incorporated in customized neural models.
arXiv Detail & Related papers (2024-07-30T03:10:30Z) - Prompt-to-OS (P2OS): Revolutionizing Operating Systems and
Human-Computer Interaction with Integrated AI Generative Models [10.892991111926573]
We present a paradigm for human-computer interaction that revolutionizes the traditional notion of an operating system.
Within this innovative framework, user requests issued to the machine are handled by an interconnected ecosystem of generative AI models.
This visionary concept raises significant challenges, including privacy, security, trustability, and the ethical use of generative models.
arXiv Detail & Related papers (2023-10-07T17:16:34Z) - ChatPLUG: Open-Domain Generative Dialogue System with Internet-Augmented
Instruction Tuning for Digital Human [76.62897301298699]
ChatPLUG is a Chinese open-domain dialogue system for digital human applications that instruction finetunes on a wide range of dialogue tasks in a unified internet-augmented format.
We show that modelname outperforms state-of-the-art Chinese dialogue systems on both automatic and human evaluation.
We deploy modelname to real-world applications such as Smart Speaker and Instant Message applications with fast inference.
arXiv Detail & Related papers (2023-04-16T18:16:35Z) - PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chat is a Pointer network guided generative dialogue model, incorporating a unified pretrained language model and a pointer network over knowledge graphs.
The words generated by PK-Chat in the dialogue are derived from the prediction of word lists and the direct prediction of the external knowledge graph knowledge.
Based on the PK-Chat, a dialogue system is built for academic scenarios in the case of geosciences.
arXiv Detail & Related papers (2023-04-02T18:23:13Z) - Emotion Recognition in Conversation using Probabilistic Soft Logic [17.62924003652853]
emotion recognition in conversation (ERC) is a sub-field of emotion recognition that focuses on conversations that contain two or more utterances.
We implement our approach in a framework called Probabilistic Soft Logic (PSL), a declarative templating language.
PSL provides functionality for the incorporation of results from neural models into PSL models.
We compare our method with state-of-the-art purely neural ERC systems, and see almost a 20% improvement.
arXiv Detail & Related papers (2022-07-14T23:59:06Z) - SYNERGY: Building Task Bots at Scale Using Symbolic Knowledge and
Machine Teaching [75.87418236410296]
SYNERGY is a hybrid learning framework where a task bot is developed in two steps.
A pre-trained neural dialog model, SOLOIST, is fine-tuned on the simulated dialogs to build a bot for the task.
The fine-tuned neural dialog model is continually refined with a handful of real task-specific dialogs via machine teaching.
arXiv Detail & Related papers (2021-10-21T23:13:04Z) - LOA: Logical Optimal Actions for Text-based Interaction Games [63.003353499732434]
We present Logical Optimal Actions (LOA), an action decision architecture of reinforcement learning applications.
LOA is a combination of neural network and symbolic knowledge acquisition approach for natural language interaction games.
arXiv Detail & Related papers (2021-10-21T08:36:11Z) - Discovering Dialog Structure Graph for Open-Domain Dialog Generation [51.29286279366361]
We conduct unsupervised discovery of dialog structure from chitchat corpora.
We then leverage it to facilitate dialog generation in downstream systems.
We present a Discrete Variational Auto-Encoder with Graph Neural Network (DVAE-GNN), to discover a unified human-readable dialog structure.
arXiv Detail & Related papers (2020-12-31T10:58:37Z) - Interactive Teaching for Conversational AI [2.5259192787433706]
Current conversational AI systems aim to understand a set of pre-designed requests and execute related actions.
Motivated by how children learn their first language interacting with adults, this paper describes a new Teachable AI system.
It is capable of learning new language nuggets called concepts, directly from end users using live interactive teaching sessions.
arXiv Detail & Related papers (2020-12-02T04:08:49Z) - Structured Attention for Unsupervised Dialogue Structure Induction [110.12561786644122]
We propose to incorporate structured attention layers into a Variational Recurrent Neural Network (VRNN) model with discrete latent states to learn dialogue structure in an unsupervised fashion.
Compared to a vanilla VRNN, structured attention enables a model to focus on different parts of the source sentence embeddings while enforcing a structural inductive bias.
arXiv Detail & Related papers (2020-09-17T23:07:03Z) - Chat as Expected: Learning to Manipulate Black-box Neural Dialogue
Models [44.952436901380416]
We investigate whether we can learn to craft input sentences that result in a black-box neural dialogue model being manipulated.
We propose a reinforcement learning based model that can generate such desired inputs automatically.
Our work reveals the potential of neural dialogue models to be manipulated, which inspires and opens the door towards developing strategies to defend them.
arXiv Detail & Related papers (2020-05-27T05:34:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.