Towards Multilingual Audio-Visual Question Answering
- URL: http://arxiv.org/abs/2406.09156v1
- Date: Thu, 13 Jun 2024 14:18:56 GMT
- Title: Towards Multilingual Audio-Visual Question Answering
- Authors: Orchid Chetia Phukan, Priyabrata Mallick, Swarup Ranjan Behera, Aalekhya Satya Narayani, Arun Balaji Buduru, Rajesh Sharma,
- Abstract summary: We leverage machine translation and present two multilingual AVQA datasets for eight languages.
This prevents extra human annotation efforts of collecting questions and answers manually.
We introduce a suite of models namely MERA-L, MERA-C, MERA-T with varied model architectures to benchmark the proposed datasets.
- Score: 1.3194391758295114
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we work towards extending Audio-Visual Question Answering (AVQA) to multilingual settings. Existing AVQA research has predominantly revolved around English and replicating it for addressing AVQA in other languages requires a substantial allocation of resources. As a scalable solution, we leverage machine translation and present two multilingual AVQA datasets for eight languages created from existing benchmark AVQA datasets. This prevents extra human annotation efforts of collecting questions and answers manually. To this end, we propose, MERA framework, by leveraging state-of-the-art (SOTA) video, audio, and textual foundation models for AVQA in multiple languages. We introduce a suite of models namely MERA-L, MERA-C, MERA-T with varied model architectures to benchmark the proposed datasets. We believe our work will open new research directions and act as a reference benchmark for future works in multilingual AVQA.
Related papers
- Datasets for Multilingual Answer Sentence Selection [59.28492975191415]
We introduce new high-quality datasets for AS2 in five European languages (French, German, Italian, Portuguese, and Spanish)
Results indicate that our datasets are pivotal in producing robust and powerful multilingual AS2 models.
arXiv Detail & Related papers (2024-06-14T16:50:29Z) - Can a Multichoice Dataset be Repurposed for Extractive Question Answering? [52.28197971066953]
We repurposed the Belebele dataset (Bandarkar et al., 2023), which was designed for multiple-choice question answering (MCQA)
We present annotation guidelines and a parallel EQA dataset for English and Modern Standard Arabic (MSA).
Our aim is to enable others to adapt our approach for the 120+ other language variants in Belebele, many of which are deemed under-resourced.
arXiv Detail & Related papers (2024-04-26T11:46:05Z) - Cross-Lingual Knowledge Distillation for Answer Sentence Selection in
Low-Resource Languages [90.41827664700847]
We propose Cross-Lingual Knowledge Distillation (CLKD) from a strong English AS2 teacher as a method to train AS2 models for low-resource languages.
To evaluate our method, we introduce 1) Xtr-WikiQA, a translation-based WikiQA dataset for 9 additional languages, and 2) TyDi-AS2, a multilingual AS2 dataset with over 70K questions spanning 8 typologically diverse languages.
arXiv Detail & Related papers (2023-05-25T17:56:04Z) - MaXM: Towards Multilingual Visual Question Answering [28.268881608141303]
We propose scalable solutions to multilingual visual question answering (mVQA) on both data and modeling fronts.
We first propose a translation-based framework to mVQA data generation that requires much less human annotation efforts than the conventional approach of directly collection questions and answers.
Then, we apply our framework to the multilingual captions in the Crossmodal-3600 dataset and develop an efficient annotation protocol to create MaXM, a test-only VQA benchmark in 7 diverse languages.
arXiv Detail & Related papers (2022-09-12T16:53:37Z) - MFAQ: a Multilingual FAQ Dataset [9.625301186732598]
We present the first multilingual FAQ dataset publicly available.
We collected around 6M FAQ pairs from the web, in 21 different languages.
We adopt a similar setup as Dense Passage Retrieval (DPR) and test various bi-encoders on this dataset.
arXiv Detail & Related papers (2021-09-27T08:43:25Z) - xGQA: Cross-Lingual Visual Question Answering [100.35229218735938]
xGQA is a new multilingual evaluation benchmark for the visual question answering task.
We extend the established English GQA dataset to 7 typologically diverse languages.
We propose new adapter-based approaches to adapt multimodal transformer-based models to become multilingual.
arXiv Detail & Related papers (2021-09-13T15:58:21Z) - One Question Answering Model for Many Languages with Cross-lingual Dense
Passage Retrieval [39.061900747689094]
CORA is a Cross-lingual Open-Retrieval Answer Generation model.
It can answer questions across many languages even when language-specific annotated data or knowledge sources are unavailable.
arXiv Detail & Related papers (2021-07-26T06:02:54Z) - Multilingual Answer Sentence Reranking via Automatically Translated Data [97.98885151955467]
We present a study on the design of multilingual Answer Sentence Selection (AS2) models, which are a core component of modern Question Answering (QA) systems.
The main idea is to transfer data, created from one resource rich language, e.g., English, to other languages, less rich in terms of resources.
arXiv Detail & Related papers (2021-02-20T03:52:08Z) - XOR QA: Cross-lingual Open-Retrieval Question Answering [75.20578121267411]
This work extends open-retrieval question answering to a cross-lingual setting.
We construct a large-scale dataset built on questions lacking same-language answers.
arXiv Detail & Related papers (2020-10-22T16:47:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.