Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks
- URL: http://arxiv.org/abs/2406.09262v2
- Date: Mon, 14 Oct 2024 15:10:49 GMT
- Title: Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks
- Authors: Spencer Young, Porter Jenkins, Lonchao Da, Jeff Dotson, Hua Wei,
- Abstract summary: We propose the Deep Double Poisson Network (DDPN) to produce accurate, input-conditional uncertainty representations.
DDPN vastly outperforms existing discrete models.
It can be applied to a variety of count regression datasets.
- Score: 4.58556584533865
- License:
- Abstract: Neural networks that can produce accurate, input-conditional uncertainty representations are critical for real-world applications. Recent progress on heteroscedastic continuous regression has shown great promise for calibrated uncertainty quantification on complex tasks, like image regression. However, when these methods are applied to discrete regression tasks, such as crowd counting, ratings prediction, or inventory estimation, they tend to produce predictive distributions with numerous pathologies. Moreover, discrete models based on the Generalized Linear Model (GLM) framework either cannot process complex input or are not fully heterosedastic. To address these issues we propose the Deep Double Poisson Network (DDPN). In contrast to networks trained to minimize Gaussian negative log likelihood (NLL), discrete network parameterizations (i.e., Poisson, Negative binomial), and GLMs, DDPN can produce discrete predictive distributions of arbitrary flexibility. Additionally, we propose a technique to tune the prioritization of mean fit and probabilistic calibration during training. We show DDPN 1) vastly outperforms existing discrete models; 2) meets or exceeds the accuracy and flexibility of networks trained with Gaussian NLL; 3) produces proper predictive distributions over discrete counts; and 4) exhibits superior out-of-distribution detection. DDPN can easily be applied to a variety of count regression datasets including tabular, image, point cloud, and text data.
Related papers
- Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
We propose a neural network-based distributional regression methodology called engression'
An engression model is generative in the sense that we can sample from the fitted conditional distribution and is also suitable for high-dimensional outcomes.
We show that engression can successfully perform extrapolation under some assumptions such as monotonicity, whereas traditional regression approaches such as least-squares or quantile regression fall short under the same assumptions.
arXiv Detail & Related papers (2023-07-03T08:19:00Z) - Sparsifying Bayesian neural networks with latent binary variables and
normalizing flows [10.865434331546126]
We will consider two extensions to the latent binary Bayesian neural networks (LBBNN) method.
Firstly, by using the local reparametrization trick (LRT) to sample the hidden units directly, we get a more computationally efficient algorithm.
More importantly, by using normalizing flows on the variational posterior distribution of the LBBNN parameters, the network learns a more flexible variational posterior distribution than the mean field Gaussian.
arXiv Detail & Related papers (2023-05-05T09:40:28Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
Uncertainty quantification is an important task in machine learning.
We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation.
arXiv Detail & Related papers (2023-02-21T20:23:56Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
We argue that the feature statistics can be properly manipulated to improve the generalization ability of deep learning models.
Common methods often consider the feature statistics as deterministic values measured from the learned features.
We improve the network generalization ability by modeling the uncertainty of domain shifts with synthesized feature statistics during training.
arXiv Detail & Related papers (2022-02-08T16:09:12Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
We present Prior-Data Fitted Networks (PFNs)
PFNs leverage in-context learning in large-scale machine learning techniques to approximate a large set of posteriors.
We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems.
arXiv Detail & Related papers (2021-12-20T13:07:39Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unifying supervised learning and VAEs -- coverage, systematics and
goodness-of-fit in normalizing-flow based neural network models for
astro-particle reconstructions [0.0]
Statistical uncertainties, coverage, systematic uncertainties or a goodness-of-fit measure are often not calculated.
We show that a KL-divergence objective of the joint distribution of data and labels allows to unify supervised learning and variational autoencoders.
We discuss how to calculate coverage probabilities without numerical integration for specific "base-ordered" contours.
arXiv Detail & Related papers (2020-08-13T11:28:57Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.