LLAVIDAL: Benchmarking Large Language Vision Models for Daily Activities of Living
- URL: http://arxiv.org/abs/2406.09390v1
- Date: Thu, 13 Jun 2024 17:59:05 GMT
- Title: LLAVIDAL: Benchmarking Large Language Vision Models for Daily Activities of Living
- Authors: Rajatsubhra Chakraborty, Arkaprava Sinha, Dominick Reilly, Manish Kumar Govind, Pu Wang, Francois Bremond, Srijan Das,
- Abstract summary: We introduce LLAVIDAL, an LLVM capable of incorporating pertinent 3D poses and relevant object trajectories to understand the intricate relationships within ADLs.
When trained on ADL-X, LLAVIDAL consistently achieves state-of-the-art performance across all ADL evaluation metrics.
- Score: 14.461123324732451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Vision Models (LLVMs) have demonstrated effectiveness in processing internet videos, yet they struggle with the visually perplexing dynamics present in Activities of Daily Living (ADL) due to limited pertinent datasets and models tailored to relevant cues. To this end, we propose a framework for curating ADL multiview datasets to fine-tune LLVMs, resulting in the creation of ADL-X, comprising 100K RGB video-instruction pairs, language descriptions, 3D skeletons, and action-conditioned object trajectories. We introduce LLAVIDAL, an LLVM capable of incorporating 3D poses and relevant object trajectories to understand the intricate spatiotemporal relationships within ADLs. Furthermore, we present a novel benchmark, ADLMCQ, for quantifying LLVM effectiveness in ADL scenarios. When trained on ADL-X, LLAVIDAL consistently achieves state-of-the-art performance across all ADL evaluation metrics. Qualitative analysis reveals LLAVIDAL's temporal reasoning capabilities in understanding ADL. The link to the dataset is provided at: https://adl-x.github.io/
Related papers
- Large Language Models are Zero-Shot Recognizers for Activities of Daily Living [0.29998889086656577]
We propose ADL-LLM, a novel LLM-based ADLs recognition system.
ADL-LLM transforms raw sensor data into textual representations, that are processed by an LLM to perform zero-shot ADLs recognition.
We evaluate ADL-LLM on two public datasets, showing its effectiveness in this domain.
arXiv Detail & Related papers (2024-07-01T12:32:38Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - 3DBench: A Scalable 3D Benchmark and Instruction-Tuning Dataset [13.808860456901204]
We introduce a scalable 3D benchmark, accompanied by a large-scale instruction-tuning dataset known as 3DBench.
Specifically, we establish the benchmark that spans a wide range of spatial and semantic scales, from object-level to scene-level.
We present a rigorous pipeline for automatically constructing scalable 3D instruction-tuning datasets, covering 10 diverse multi-modal tasks with more than 0.23 million QA pairs generated in total.
arXiv Detail & Related papers (2024-04-23T02:06:10Z) - Towards Multimodal In-Context Learning for Vision & Language Models [21.69457980865084]
State-of-the-art Vision-Language Models (VLMs) ground the vision and the language modality.
We propose a simple yet surprisingly effective multi-turn curriculum-based learning methodology with effective data mixes.
arXiv Detail & Related papers (2024-03-19T13:53:37Z) - Uni3DL: Unified Model for 3D and Language Understanding [41.74095171149082]
We present Uni3DL, a unified model for 3D and Language understanding.
Uni3DL operates directly on point clouds.
It has been rigorously evaluated across diverse 3D vision-language understanding tasks.
arXiv Detail & Related papers (2023-12-05T08:30:27Z) - The Unreasonable Effectiveness of Large Language-Vision Models for
Source-free Video Domain Adaptation [56.61543110071199]
Source-Free Video Unsupervised Domain Adaptation (SFVUDA) task consists in adapting an action recognition model, trained on a labelled source dataset, to an unlabelled target dataset.
Previous approaches have attempted to address SFVUDA by leveraging self-supervision derived from the target data itself.
We take an approach by exploiting "web-supervision" from Large Language-Vision Models (LLVMs), driven by the rationale that LLVMs contain a rich world prior surprisingly robust to domain-shift.
arXiv Detail & Related papers (2023-08-17T18:12:05Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - Teaching Structured Vision&Language Concepts to Vision&Language Models [46.344585368641006]
We introduce the collective notion of Structured Vision&Language Concepts (SVLC)
SVLC includes object attributes, relations, and states which are present in the text and visible in the image.
We propose a more elegant data-driven approach for enhancing VL models' understanding of SVLCs.
arXiv Detail & Related papers (2022-11-21T18:54:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.