VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding
- URL: http://arxiv.org/abs/2406.09418v1
- Date: Thu, 13 Jun 2024 17:59:59 GMT
- Title: VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding
- Authors: Muhammad Maaz, Hanoona Rasheed, Salman Khan, Fahad Khan,
- Abstract summary: Video LMMs rely on either image or video encoders to process visual inputs, each of which has its own limitations.
We introduce VideoGPT+, which combines the complementary benefits of the image encoder (for detailed spatial understanding) and the video encoder (for global temporal context modeling)
Our architecture showcases improved performance across multiple video benchmarks, including VCGBench, MVBench and Zero-shot question-answering.
- Score: 15.959757105308238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building on the advances of language models, Large Multimodal Models (LMMs) have contributed significant improvements in video understanding. While the current video LMMs utilize advanced Large Language Models (LLMs), they rely on either image or video encoders to process visual inputs, each of which has its own limitations. Image encoders excel at capturing rich spatial details from frame sequences but lack explicit temporal context, which can be important in videos with intricate action sequences. On the other hand, video encoders provide temporal context but are often limited by computational constraints that lead to processing only sparse frames at lower resolutions, resulting in reduced contextual and spatial understanding. To this end, we introduce VideoGPT+, which combines the complementary benefits of the image encoder (for detailed spatial understanding) and the video encoder (for global temporal context modeling). The model processes videos by dividing them into smaller segments and applies an adaptive pooling strategy on features extracted by both image and video encoders. Our architecture showcases improved performance across multiple video benchmarks, including VCGBench, MVBench and Zero-shot question-answering. Further, we develop 112K video-instruction set using a novel semi-automatic annotation pipeline which further improves the model performance. Additionally, to comprehensively evaluate video LMMs, we present VCGBench-Diverse, covering 18 broad video categories such as lifestyle, sports, science, gaming, and surveillance videos. This benchmark with 4,354 question-answer pairs evaluates the generalization of existing LMMs on dense video captioning, spatial and temporal understanding, and complex reasoning, ensuring comprehensive assessment across diverse video types and dynamics. Code: https://github.com/mbzuai-oryx/VideoGPT-plus.
Related papers
- Interpolating Video-LLMs: Toward Longer-sequence LMMs in a Training-free Manner [53.671484175063995]
Video-LLMs are pre-trained to process short videos, limiting their broader application for understanding longer video content.
We introduce an alternative video token rearrangement technique that circumvents limitations imposed by the fixed video encoder and alignment projector.
arXiv Detail & Related papers (2024-09-19T17:59:55Z) - VideoLLaMB: Long-context Video Understanding with Recurrent Memory Bridges [42.555895949250704]
VideoLLaMB is a novel framework that utilizes temporal memory tokens within bridge layers to allow for the encoding of entire video sequences.
SceneTilling algorithm segments videos into independent semantic units to preserve semantic integrity.
In terms of efficiency, VideoLLaMB, trained on 16 frames, supports up to 320 frames on a single Nvidia A100 GPU.
arXiv Detail & Related papers (2024-09-02T08:52:58Z) - When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding [112.44822009714461]
Cross-Modality Video Coding (CMVC) is a pioneering approach to explore multimodality representation and video generative models in video coding.
During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes.
Experiments indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency.
arXiv Detail & Related papers (2024-08-15T11:36:18Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
We build on the common paradigm of transferring large-scale, image--text models to video via shallow temporal fusion.
We expose two limitations to the approach: (1) decreased spatial capabilities, likely due to poor video--language alignment in standard video datasets, and (2) higher memory consumption, bottlenecking the number of frames that can be processed.
arXiv Detail & Related papers (2023-12-12T16:10:19Z) - MagicVideo: Efficient Video Generation With Latent Diffusion Models [76.95903791630624]
We present an efficient text-to-video generation framework based on latent diffusion models, termed MagicVideo.
Due to a novel and efficient 3D U-Net design and modeling video distributions in a low-dimensional space, MagicVideo can synthesize video clips with 256x256 spatial resolution on a single GPU card.
We conduct extensive experiments and demonstrate that MagicVideo can generate high-quality video clips with either realistic or imaginary content.
arXiv Detail & Related papers (2022-11-20T16:40:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.