Kibble-Zurek Mechanism and Beyond: Lessons from a Holographic Superfluid Disk
- URL: http://arxiv.org/abs/2406.09433v1
- Date: Fri, 7 Jun 2024 09:45:37 GMT
- Title: Kibble-Zurek Mechanism and Beyond: Lessons from a Holographic Superfluid Disk
- Authors: Chuan-Yin Xia, Hua-Bi Zeng, AndrĂ¡s Grabarits, Adolfo del Campo,
- Abstract summary: Superfluid phase transition dynamics is studied in the framework of the Einstein-Abelian-Higgs model in an $AdS_4$ black hole.
For a slow quench, the vortex density admits a universal scaling law with the cooling rate as predicted by the Kibble-Zurek mechanism (KZM)
For fast quenches, the density shows a universal scaling behavior as a function of the final temperature, that lies beyond the KZM prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The superfluid phase transition dynamics and associated spontaneous vortex formation with the crossing of the critical temperature in a disk geometry is studied in the framework of the $AdS/CFT$ correspondence by solving the Einstein-Abelian-Higgs model in an $AdS_4$ black hole. For a slow quench, the vortex density admits a universal scaling law with the cooling rate as predicted by the Kibble-Zurek mechanism (KZM), while for fast quenches, the density shows a universal scaling behavior as a function of the final temperature, that lies beyond the KZM prediction. The vortex number distribution in both the power-law and saturation regimes can be approximated by a normal distribution. However, the study of the universal scaling of the cumulants reveals non-normal features and indicates that vortex statistics in the newborn superfluid is best described by the Poisson binomial distribution, previously predicted in the KZM regime [Phys. Rev. Lett. 124, 240602 (2020)]. This is confirmed by studying the cumulant scalings as a function of the quench time and the quench depth. Our work supports the existence of a universal defect number distribution that accommodates the KZM scaling, its breakdown at fast quenches, and the additional universal scaling laws as a function of the final value of the control parameter.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Universal Vortex Statistics and Stochastic Geometry of Bose-Einstein
Condensation [0.0]
vortex statistics are described by a homogeneous point process (PPP) with a density dictated by the Kibble-Zurek mechanism (KZM)
We validate this model using numerical simulations of the two-dimensional Gross-Pitaevskii equation (SGPE) for both a homogeneous and a hard-wall condensate.
arXiv Detail & Related papers (2024-01-17T19:00:00Z) - Dynamics of magnetization at infinite temperature in a Heisenberg spin chain [105.07522062418397]
In a chain of 46 superconducting qubits, we study the probability distribution, $P(mathcalM)$, of the magnetization transferred across the chain's center.
The first two moments of $P(mathcalM)$ show superdiffusive behavior, a hallmark of KPZ.
The third and fourth moments rule out the KPZ conjecture and allow for evaluating other theories.
arXiv Detail & Related papers (2023-06-15T17:58:48Z) - Scaling of fronts and entanglement spreading during a domain wall
melting [0.0]
We revisit the out-of-equilibrium physics arising during the unitary evolution of a one-dimensional XXZ spin chain.
In the last part of the work, we include large-scale quantum fluctuations on top of the semi-classical hydrodynamic background.
arXiv Detail & Related papers (2023-03-17T15:34:43Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Universal breakdown of Kibble-Zurek scaling in fast quenches across a
phase transition [0.0]
The crossing of a continuous phase transition gives rise to the formation of topological defects in the limit of slow quenches.
The Kibble-Zurek mechanism (KZM) predicts a universal power-law scaling of the defect density as a function of the quench time.
arXiv Detail & Related papers (2022-04-28T14:28:51Z) - Distribution of Kinks in an Ising Ferromagnet After Annealing and the
Generalized Kibble-Zurek Mechanism [0.8258451067861933]
We consider a one-dimensional Isingmagnet induced by a temperature quench in finite time.
The universal power-law scaling of cumulants is corroborated by numerical simulations based on Glauber dynamics.
We consider linear, nonlinear, and exponential cooling schedules, among which the latter provides the most efficient shortcuts to cooling in a given time.
arXiv Detail & Related papers (2021-05-19T13:58:33Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Universal Statistics of Vortices in a Newborn Holographic
Superconductor: Beyond the Kibble-Zurek Mechanism [52.77024349608834]
We investigate universal signatures beyond the celebrated Kibble-Zurek mechanism (KZM)
We characterize the distribution of vortices generated in a thermal quench leading to the formation of a holographic superconductor.
arXiv Detail & Related papers (2021-01-06T18:06:40Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.