Analyzing Gender Polarity in Short Social Media Texts with BERT: The Role of Emojis and Emoticons
- URL: http://arxiv.org/abs/2406.09573v1
- Date: Thu, 13 Jun 2024 20:23:59 GMT
- Title: Analyzing Gender Polarity in Short Social Media Texts with BERT: The Role of Emojis and Emoticons
- Authors: Saba Yousefian Jazi, Amir Mirzaeinia, Sina Yousefian Jazi,
- Abstract summary: We analyze the effect of using emojis and emoticons in performance of our model in classifying task.
We were able to demonstrate that the use of these none word inputs alongside the mention of other accounts in a short text format like tweet has an impact in detecting the account holder's gender.
- Score: 0.5461938536945723
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this effort we fine tuned different models based on BERT to detect the gender polarity of twitter accounts. We specially focused on analyzing the effect of using emojis and emoticons in performance of our model in classifying task. We were able to demonstrate that the use of these none word inputs alongside the mention of other accounts in a short text format like tweet has an impact in detecting the account holder's gender.
Related papers
- Semantics Preserving Emoji Recommendation with Large Language Models [47.94761630160614]
Existing emoji recommendation methods are primarily evaluated based on their ability to match the exact emoji a user chooses in the original text.
We propose a new semantics preserving evaluation framework for emoji recommendation, which measures a model's ability to recommend emojis that maintain the semantic consistency with the user's text.
arXiv Detail & Related papers (2024-09-16T22:27:46Z) - Emoji Prediction in Tweets using BERT [0.0]
We propose a transformer-based approach for emoji prediction using BERT, a widely-used pre-trained language model.
We fine-tuned BERT on a large corpus of text (tweets) containing both text and emojis to predict the most appropriate emoji for a given text.
Our experimental results demonstrate that our approach outperforms several state-of-the-art models in predicting emojis with an accuracy of over 75 percent.
arXiv Detail & Related papers (2023-07-05T06:38:52Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - Auditing Gender Presentation Differences in Text-to-Image Models [54.16959473093973]
We study how gender is presented differently in text-to-image models.
By probing gender indicators in the input text, we quantify the frequency differences of presentation-centric attributes.
We propose an automatic method to estimate such differences.
arXiv Detail & Related papers (2023-02-07T18:52:22Z) - Emoji-aware Co-attention Network with EmoGraph2vec Model for Sentiment
Anaylsis [9.447106020795292]
We propose a method to learn emoji representations called EmoGraph2vec and design an emoji-aware co-attention network.
Our model designs a co-attention mechanism to incorporate the text and emojis, and integrates a squeeze-and-excitation block into a convolutional neural network.
Experimental results show that the proposed model can outperform several baselines for sentiment analysis on benchmark datasets.
arXiv Detail & Related papers (2021-10-27T08:01:10Z) - Black or White but never neutral: How readers perceive identity from
yellow or skin-toned emoji [90.14874935843544]
Recent work established a connection between expression of identity and emoji usage on social media.
This work asks if, as with language, readers are sensitive to such acts of self-expression and use them to understand the identity of authors.
arXiv Detail & Related papers (2021-05-12T18:23:51Z) - Identity Signals in Emoji Do not Influence Perception of Factual Truth
on Twitter [90.14874935843544]
Prior work has shown that Twitter users use skin-toned emoji as an act of self-representation to express their racial/ethnic identity.
We test whether this signal of identity can influence readers' perceptions about the content of a post containing that signal.
We find that neither emoji nor profile photo has an effect on how readers rate these facts.
arXiv Detail & Related papers (2021-05-07T10:56:19Z) - Semantic Journeys: Quantifying Change in Emoji Meaning from 2012-2018 [66.28665205489845]
We offer the first longitudinal study of how emoji semantics changes over time, applying techniques from computational linguistics to six years of Twitter data.
We identify five patterns in emoji semantic development and find evidence that the less abstract an emoji is, the more likely it is to undergo semantic change.
To aid future work on emoji and semantics, we make our data publicly available along with a web-based interface that anyone can use to explore semantic change in emoji.
arXiv Detail & Related papers (2021-05-03T13:35:10Z) - A `Sourceful' Twist: Emoji Prediction Based on Sentiment, Hashtags and
Application Source [1.6818451361240172]
We showcase the importance of using Twitter features to help the model understand the sentiment involved and hence to predict the most suitable emoji for the text.
Our data analysis and neural network model performance evaluations depict that using hashtags and application sources as features allows to encode different information and is effective in emoji prediction.
arXiv Detail & Related papers (2021-03-14T03:05:04Z) - Assessing Emoji Use in Modern Text Processing Tools [35.79765461713127]
Emojis have become ubiquitous in digital communication, due to their visual appeal as well as their ability to vividly convey human emotion.
The growing prominence of emojis in social media and other instant messaging also leads to an increased need for systems and tools to operate on text containing emojis.
In this study, we assess this support by considering test sets of tweets with emojis, based on which we perform a series of experiments investigating the ability of prominent NLP and text processing tools to adequately process them.
arXiv Detail & Related papers (2021-01-02T11:38:05Z) - Emoji Prediction: Extensions and Benchmarking [30.642840676899734]
The emoji prediction task aims at predicting the proper set of emojis associated with a piece of text.
We extend the existing setting of the emoji prediction task to include a richer set of emojis and to allow multi-label classification.
We propose novel models for multi-class and multi-label emoji prediction based on Transformer networks.
arXiv Detail & Related papers (2020-07-14T22:41:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.