Learning Color Equivariant Representations
- URL: http://arxiv.org/abs/2406.09588v3
- Date: Sun, 20 Oct 2024 23:21:45 GMT
- Title: Learning Color Equivariant Representations
- Authors: Felix O'Mahony, Yulong Yang, Christine Allen-Blanchette,
- Abstract summary: We introduce group convolutional neural networks (GCNNs) equivariant to color variation.
GCNNs have been designed for a variety of geometric transformations from 2D and 3D rotation groups, to semi-groups such as scale.
- Score: 1.9594704501292781
- License:
- Abstract: In this paper, we introduce group convolutional neural networks (GCNNs) equivariant to color variation. GCNNs have been designed for a variety of geometric transformations from 2D and 3D rotation groups, to semi-groups such as scale. Despite the improved interpretability, accuracy and generalizability of these architectures, GCNNs have seen limited application in the context of perceptual quantities. Notably, the recent CEConv network uses a GCNN to achieve equivariance to hue transformations by convolving input images with a hue rotated RGB filter. However, this approach leads to invalid RGB values which break equivariance and degrade performance. We resolve these issues with a lifting layer that transforms the input image directly, thereby circumventing the issue of invalid RGB values and improving equivariance error by over three orders of magnitude. Moreover, we extend the notion of color equivariance to include equivariance to saturation shift. Our hue-, saturation-, and color-equivariant networks achieve strong generalization to out-of-distribution perceptual variations and improved sample efficiency over conventional architectures. We demonstrate the utility of our approach on synthetic and real world datasets where we consistently outperform competitive baselines.
Related papers
- Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts [21.397064770689795]
Group Equivariant CNNs (G-CNNs) have shown promising efficacy in various tasks, owing to their ability to capture hierarchical features in an equivariant manner.
We propose a novel approach, Variational Partial G-CNN (VP G-CNN), to capture varying levels of partial equivariance specific to each data instance.
We demonstrate the effectiveness of VP G-CNN on both toy and real-world datasets, including M67-180, CIFAR10, ColorMNIST, and Flowers102.
arXiv Detail & Related papers (2024-07-05T05:52:51Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
We propose a novel approach to improve NeRF's performance with sparse inputs.
We first adopt a voxel-based ray sampling strategy to ensure that the sampled rays intersect with a certain voxel in 3D space.
We then randomly sample additional points within the voxel and apply a Transformer to infer the properties of other points on each ray, which are then incorporated into the volume rendering.
arXiv Detail & Related papers (2024-03-25T15:56:17Z) - Color Equivariant Convolutional Networks [50.655443383582124]
CNNs struggle if there is data imbalance between color variations introduced by accidental recording conditions.
We propose Color Equivariant Convolutions ( CEConvs), a novel deep learning building block that enables shape feature sharing across the color spectrum.
We demonstrate the benefits of CEConvs in terms of downstream performance to various tasks and improved robustness to color changes, including train-test distribution shifts.
arXiv Detail & Related papers (2023-10-30T09:18:49Z) - Sorted Convolutional Network for Achieving Continuous Rotational
Invariance [56.42518353373004]
We propose a Sorting Convolution (SC) inspired by some hand-crafted features of texture images.
SC achieves continuous rotational invariance without requiring additional learnable parameters or data augmentation.
Our results demonstrate that SC achieves the best performance in the aforementioned tasks.
arXiv Detail & Related papers (2023-05-23T18:37:07Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
We address the problem of improving the performance and in particular the sample complexity of deep neural networks.
Group-equivariant convolutions are a popular approach to obtain equivariant representations.
We propose a multi-stream architecture, where each stream is invariant to a different transformation.
arXiv Detail & Related papers (2023-03-02T20:44:45Z) - Offset equivariant networks and their applications [5.617903764268157]
equivariant networks are neural networks that preserve in their output uniform increments in the input.
We present a framework for the design and implementation of offset equivariant networks.
Our experiments show that the performance of offset equivariant networks are comparable to those in the state of the art on regular data.
arXiv Detail & Related papers (2022-07-01T09:38:19Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
We show that transformation-invariant and distance-preserving initial representations are sufficient to achieve transformation invariance.
Specifically, we realize transformation-invariant and distance-preserving initial point representations by modifying multi-dimensional scaling.
We prove that TinvNN can strictly guarantee transformation invariance, being general and flexible enough to be combined with the existing neural networks.
arXiv Detail & Related papers (2021-12-23T03:52:33Z) - Implicit Equivariance in Convolutional Networks [1.911678487931003]
Implicitly Equivariant Networks (IEN) induce equivariant in the different layers of a standard CNN model.
We show IEN outperforms the state-of-the-art rotation equivariant tracking method while providing faster inference speed.
arXiv Detail & Related papers (2021-11-28T14:44:17Z) - Quantised Transforming Auto-Encoders: Achieving Equivariance to
Arbitrary Transformations in Deep Networks [23.673155102696338]
Convolutional Neural Networks (CNNs) are equivariant to image translation.
We propose an auto-encoder architecture whose embedding obeys an arbitrary set of equivariance relations simultaneously.
We demonstrate results of successful re-rendering of transformed versions of input images on several datasets.
arXiv Detail & Related papers (2021-11-25T02:26:38Z) - Invariant Deep Compressible Covariance Pooling for Aerial Scene
Categorization [80.55951673479237]
We propose a novel invariant deep compressible covariance pooling (IDCCP) to solve nuisance variations in aerial scene categorization.
We conduct extensive experiments on the publicly released aerial scene image data sets and demonstrate the superiority of this method compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-11-11T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.