Federated Learning with Flexible Architectures
- URL: http://arxiv.org/abs/2406.09877v1
- Date: Fri, 14 Jun 2024 09:44:46 GMT
- Title: Federated Learning with Flexible Architectures
- Authors: Jong-Ik Park, Carlee Joe-Wong,
- Abstract summary: This paper introduces Federated Learning with Flexible Architectures (FedFA), an FL training algorithm that allows clients to train models of different widths and depths.
FedFA incorporates the layer grafting technique to align clients' local architectures with the largest network architecture in the FL system during model aggregation.
- Score: 12.800116749927266
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traditional federated learning (FL) methods have limited support for clients with varying computational and communication abilities, leading to inefficiencies and potential inaccuracies in model training. This limitation hinders the widespread adoption of FL in diverse and resource-constrained environments, such as those with client devices ranging from powerful servers to mobile devices. To address this need, this paper introduces Federated Learning with Flexible Architectures (FedFA), an FL training algorithm that allows clients to train models of different widths and depths. Each client can select a network architecture suitable for its resources, with shallower and thinner networks requiring fewer computing resources for training. Unlike prior work in this area, FedFA incorporates the layer grafting technique to align clients' local architectures with the largest network architecture in the FL system during model aggregation. Layer grafting ensures that all client contributions are uniformly integrated into the global model, thereby minimizing the risk of any individual client's data skewing the model's parameters disproportionately and introducing security benefits. Moreover, FedFA introduces the scalable aggregation method to manage scale variations in weights among different network architectures. Experimentally, FedFA outperforms previous width and depth flexible aggregation strategies. Furthermore, FedFA demonstrates increased robustness against performance degradation in backdoor attack scenarios compared to earlier strategies.
Related papers
- Embracing Federated Learning: Enabling Weak Client Participation via Partial Model Training [21.89214794178211]
In Federated Learning (FL), clients may have weak devices that cannot train the full model or even hold it in their memory space.
We propose EmbracingFL, a general FL framework that allows all available clients to join the distributed training.
Our empirical study shows that EmbracingFL consistently achieves high accuracy as like all clients are strong, outperforming the state-of-the-art width reduction methods.
arXiv Detail & Related papers (2024-06-21T13:19:29Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - When Computing Power Network Meets Distributed Machine Learning: An
Efficient Federated Split Learning Framework [6.871107511111629]
CPN-FedSL is a Federated Split Learning (FedSL) framework over Computing Power Network (CPN)
We build a dedicated model to capture the basic settings and learning characteristics (e.g., latency, flow, convergence)
arXiv Detail & Related papers (2023-05-22T12:36:52Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices [79.16481453598266]
We propose InclusiveFL, a client-inclusive federated learning method to handle this problem.
The core idea of InclusiveFL is to assign models of different sizes to clients with different computing capabilities.
We also propose an effective method to share the knowledge among multiple local models with different sizes.
arXiv Detail & Related papers (2022-02-16T13:03:27Z) - Architecture Agnostic Federated Learning for Neural Networks [19.813602191888837]
This work introduces a novel Federated Heterogeneous Neural Networks (FedHeNN) framework.
FedHeNN allows each client to build a personalised model without enforcing a common architecture across clients.
The key idea of FedHeNN is to use the instance-level representations obtained from peer clients to guide the simultaneous training on each client.
arXiv Detail & Related papers (2022-02-15T22:16:06Z) - An Expectation-Maximization Perspective on Federated Learning [75.67515842938299]
Federated learning describes the distributed training of models across multiple clients while keeping the data private on-device.
In this work, we view the server-orchestrated federated learning process as a hierarchical latent variable model where the server provides the parameters of a prior distribution over the client-specific model parameters.
We show that with simple Gaussian priors and a hard version of the well known Expectation-Maximization (EM) algorithm, learning in such a model corresponds to FedAvg, the most popular algorithm for the federated learning setting.
arXiv Detail & Related papers (2021-11-19T12:58:59Z) - FedGEMS: Federated Learning of Larger Server Models via Selective
Knowledge Fusion [19.86388925556209]
Federated Learning (FL) has emerged as a viable solution to learn a global model while keeping data private.
In this work, we investigate a novel paradigm to take advantage of a powerful server model to break through model capacity in FL.
arXiv Detail & Related papers (2021-10-21T10:06:44Z) - Comfetch: Federated Learning of Large Networks on Constrained Clients
via Sketching [28.990067638230254]
Federated learning (FL) is a popular paradigm for private and collaborative model training on the edge.
We propose a novel algorithm, Comdirectional, which allows clients to train large networks using representations of the global neural network.
arXiv Detail & Related papers (2021-09-17T04:48:42Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.