GEB-1.3B: Open Lightweight Large Language Model
- URL: http://arxiv.org/abs/2406.09900v1
- Date: Fri, 14 Jun 2024 10:15:49 GMT
- Title: GEB-1.3B: Open Lightweight Large Language Model
- Authors: Jie Wu, Yufeng Zhu, Lei Shen, Xuqing Lu,
- Abstract summary: We introduce GEB-1.3B, a lightweight large language model (LLMs) trained on 550 billion tokens in both Chinese and English languages.
We employ novel training techniques, including ROPE, Group-Query-Attention, and FlashAttention-2, to accelerate training while maintaining model performance.
GEB-1.3B exhibits outstanding performance on general benchmarks such as MMLU, C-Eval, and CMMLU, outperforming comparative models such as MindLLM-1.3B and TinyLLaMA-1.1B.
The release of GEB-1.3B as an open-source model marks a significant contribution to the development
- Score: 12.083014082506281
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently developed large language models (LLMs) such as ChatGPT, Claude, and Llama have demonstrated impressive abilities, and even surpass human-level performance in several tasks. Despite their success, the resource-intensive demands of these models, requiring significant computational power for both training and inference, limit their deployment to high-performance servers. Additionally, the extensive calculation requirements of the models often lead to increased latency in response times. With the increasing need for LLMs to operate efficiently on CPUs, research about lightweight models that are optimized for CPU inference has emerged. In this work, we introduce GEB-1.3B, a lightweight LLM trained on 550 billion tokens in both Chinese and English languages. We employ novel training techniques, including ROPE, Group-Query-Attention, and FlashAttention-2, to accelerate training while maintaining model performance. Additionally, we fine-tune the model using 10 million samples of instruction data to enhance alignment. GEB-1.3B exhibits outstanding performance on general benchmarks such as MMLU, C-Eval, and CMMLU, outperforming comparative models such as MindLLM-1.3B and TinyLLaMA-1.1B. Notably, the FP32 version of GEB-1.3B achieves commendable inference times on CPUs, with ongoing efforts to further enhance speed through advanced quantization techniques. The release of GEB-1.3B as an open-source model marks a significant contribution to the development of lightweight LLMs, promising to foster further research and innovation in the field.
Related papers
- Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks.
We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs.
We show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x.
arXiv Detail & Related papers (2024-05-06T16:03:32Z) - HLAT: High-quality Large Language Model Pre-trained on AWS Trainium [21.183733616898365]
Large language models (LLMs) to perform well on the downstream tasks requires pre-training over trillions of tokens.
This typically demands a large number of powerful computational devices in addition to a stable distributed training framework to accelerate the training.
AWS Trainium is the second-generation machine learning accelerator that has been purposely built for training large deep learning models.
arXiv Detail & Related papers (2024-04-16T15:02:46Z) - H2O-Danube-1.8B Technical Report [2.6856284636402106]
We present H2O-Danube, a series of small 1.8B language models.
H2O-Danube2-1.8B achieves the top ranking on Open LLM Leaderboard for all models below the 2B parameter range.
arXiv Detail & Related papers (2024-01-30T08:45:08Z) - Distributed Inference and Fine-tuning of Large Language Models Over The
Internet [91.00270820533272]
Large language models (LLMs) are useful in many NLP tasks and become more capable with size.
These models require high-end hardware, making them inaccessible to most researchers.
We develop fault-tolerant inference algorithms and load-balancing protocols that automatically assign devices to maximize the total system throughput.
arXiv Detail & Related papers (2023-12-13T18:52:49Z) - MindLLM: Pre-training Lightweight Large Language Model from Scratch,
Evaluations and Domain Applications [46.337078949637345]
We present MindLLM, a novel series of bilingual lightweight large language models, trained from scratch.
A thorough account of experiences accrued during large model development is given, covering every step of the process.
MindLLM consistently matches or surpasses the performance of other open-source larger models on some public benchmarks.
arXiv Detail & Related papers (2023-10-24T12:22:34Z) - Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning [52.29522018586365]
We study structured pruning as an effective means to develop smaller LLMs from pre-trained, larger models.
Our approach employs two key techniques: (1) targeted structured pruning, which prunes a larger model to a specified target shape by removing layers, heads, and intermediate and hidden dimensions in an end-to-end manner, and (2) dynamic batch loading, which dynamically updates the composition of sampled data in each training batch based on varying losses across different domains.
arXiv Detail & Related papers (2023-10-10T15:13:30Z) - Training Large Language Models Efficiently with Sparsity and Dataflow [3.1780195670658378]
This paper demonstrates an end-to-end training flow on a large language model - 13 billion GPT - using sparsity and dataflow.
We show that we can successfully train GPT 13B to the same quality as the dense GPT 13B model, while achieving an end-end speedup of 4.5x over dense A100 baseline.
arXiv Detail & Related papers (2023-04-11T21:37:13Z) - GLaM: Efficient Scaling of Language Models with Mixture-of-Experts [84.33607245023049]
We propose and develop a family of language models named GLaM (Generalist Language Model)
GLaM uses a sparsely activated mixture-of-experts architecture to scale the model capacity while also incurring substantially less training cost compared to dense variants.
It consumes only 1/3 of the energy used to train GPT-3 and requires half of the flops for inference, while still achieving better overall zero-shot and one-shot performance across 29 NLP tasks.
arXiv Detail & Related papers (2021-12-13T18:58:19Z) - Scalable and Efficient MoE Training for Multitask Multilingual Models [55.987536562357086]
We develop a system capable of scaling MoE models efficiently to trillions of parameters.
We also present new training methods to improve MoE sample efficiency and leverage expert pruning strategy to improve time efficiency.
A model trained with 10 billion parameters on 50 languages can achieve state-of-the-art performance in Machine Translation (MT) and multilingual natural language generation tasks.
arXiv Detail & Related papers (2021-09-22T00:57:46Z) - CPM-2: Large-scale Cost-effective Pre-trained Language Models [71.59893315671997]
We present a suite of cost-effective techniques for the use of PLMs to deal with the efficiency issues of pre-training, fine-tuning, and inference.
We introduce knowledge inheritance to accelerate the pre-training process by exploiting existing PLMs instead of training models from scratch.
We implement a new inference toolkit, namely InfMoE, for using large-scale PLMs with limited computational resources.
arXiv Detail & Related papers (2021-06-20T15:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.