Label-Efficient Semantic Segmentation of LiDAR Point Clouds in Adverse Weather Conditions
- URL: http://arxiv.org/abs/2406.09906v1
- Date: Fri, 14 Jun 2024 10:29:00 GMT
- Title: Label-Efficient Semantic Segmentation of LiDAR Point Clouds in Adverse Weather Conditions
- Authors: Aldi Piroli, Vinzenz Dallabetta, Johannes Kopp, Marc Walessa, Daniel Meissner, Klaus Dietmayer,
- Abstract summary: Adverse weather conditions can severely affect the performance of LiDAR sensors.
Current approaches for detecting adverse weather points require large amounts of labeled data.
This paper proposes a label-efficient approach to segment LiDAR point clouds in adverse weather.
- Score: 10.306226508237348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adverse weather conditions can severely affect the performance of LiDAR sensors by introducing unwanted noise in the measurements. Therefore, differentiating between noise and valid points is crucial for the reliable use of these sensors. Current approaches for detecting adverse weather points require large amounts of labeled data, which can be difficult and expensive to obtain. This paper proposes a label-efficient approach to segment LiDAR point clouds in adverse weather. We develop a framework that uses few-shot semantic segmentation to learn to segment adverse weather points from only a few labeled examples. Then, we use a semi-supervised learning approach to generate pseudo-labels for unlabelled point clouds, significantly increasing the amount of training data without requiring any additional labeling. We also integrate good weather data in our training pipeline, allowing for high performance in both good and adverse weather conditions. Results on real and synthetic datasets show that our method performs well in detecting snow, fog, and spray. Furthermore, we achieve competitive performance against fully supervised methods while using only a fraction of labeled data.
Related papers
- SemiDDM-Weather: A Semi-supervised Learning Framework for All-in-one Adverse Weather Removal [57.52777076116241]
Adverse weather removal aims to restore clear vision under adverse weather conditions.
This paper presents a pioneering semi-supervised all-in-one adverse weather removal framework built on the teacher-student network.
arXiv Detail & Related papers (2024-09-29T12:12:22Z) - Rethinking Data Augmentation for Robust LiDAR Semantic Segmentation in Adverse Weather [21.040167521248772]
Existing LiDAR semantic segmentation methods often struggle with performance declines in adverse weather conditions.
Previous work has addressed this issue by simulating adverse weather or employing universal data augmentation during training.
We propose new strategic data augmentation techniques to pinpoint the main causes of performance degradation.
Our method achieves a notable 39.5 mIoU on the Semantic KITTI-to-SemanticSTF benchmark, improving the baseline by 8.1%p and establishing a new state-of-the-art.
arXiv Detail & Related papers (2024-07-02T14:19:51Z) - Enhancing Lidar-based Object Detection in Adverse Weather using Offset
Sequences in Time [1.1725016312484975]
Lidar-based object detection is significantly affected by adverse weather conditions such as rain and fog.
Our research provides a comprehensive study of effective methods for mitigating the effects of adverse weather on the reliability of lidar-based object detection.
arXiv Detail & Related papers (2024-01-17T08:31:58Z) - WeatherProof: A Paired-Dataset Approach to Semantic Segmentation in
Adverse Weather [9.619700283574533]
We introduce a general paired-training method that leads to improved performance on images in adverse weather conditions.
We create the first semantic segmentation dataset with accurate clear and adverse weather image pairs.
We find that training on these paired clear and adverse weather frames which share an underlying scene results in improved performance on adverse weather data.
arXiv Detail & Related papers (2023-12-15T04:57:54Z) - Learning Real-World Image De-Weathering with Imperfect Supervision [57.748585821252824]
Existing real-world de-weathering datasets often exhibit inconsistent illumination, position, and textures between the ground-truth images and the input degraded images.
We develop a Consistent Label Constructor (CLC) to generate a pseudo-label as consistent as possible with the input degraded image.
We combine the original imperfect labels and pseudo-labels to jointly supervise the de-weathering model by the proposed Information Allocation Strategy.
arXiv Detail & Related papers (2023-10-23T14:02:57Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
We introduce a novel conditional image generation framework that accepts noisy-labeled and uncurated data during training.
We propose soft curriculum learning, which assigns instance-wise weights for adversarial training while assigning new labels for unlabeled data.
Our experiments show that our approach outperforms existing semi-supervised and label-noise robust methods in terms of both quantitative and qualitative performance.
arXiv Detail & Related papers (2023-07-17T08:31:59Z) - Energy-based Detection of Adverse Weather Effects in LiDAR Data [7.924836086640871]
We propose a novel approach for detecting adverse weather effects in LiDAR data.
Our method learns to associate low energy scores with inlier points and high energy scores with outliers.
To help expand the research field of LiDAR perception in adverse weather, we release the SemanticSpray dataset.
arXiv Detail & Related papers (2023-05-25T15:03:36Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
We propose a label-efficient semantic segmentation pipeline for outdoor scenes with LiDAR point clouds.
Our method co-designs an efficient labeling process with semi/weakly supervised learning.
Our proposed method is even highly competitive compared to the fully supervised counterpart with 100% labels.
arXiv Detail & Related papers (2022-10-14T19:13:36Z) - 4DenoiseNet: Adverse Weather Denoising from Adjacent Point Clouds [1.8563342761346613]
This letter presents a novel point cloud adverse weather denoising deep learning algorithm (4DenoiseNet)
Our algorithm takes advantage of the time dimension unlike deep learning adverse weather denoising methods in the literature.
Results are achieved on our novel Snowy KITTI dataset, which has over 40000 adverse weather annotated point clouds.
arXiv Detail & Related papers (2022-09-15T08:05:42Z) - SparseDet: Improving Sparsely Annotated Object Detection with
Pseudo-positive Mining [76.95808270536318]
We propose an end-to-end system that learns to separate proposals into labeled and unlabeled regions using Pseudo-positive mining.
While the labeled regions are processed as usual, self-supervised learning is used to process the unlabeled regions.
We conduct exhaustive experiments on five splits on the PASCAL-VOC and COCO datasets achieving state-of-the-art performance.
arXiv Detail & Related papers (2022-01-12T18:57:04Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.