HIRO: Hierarchical Information Retrieval Optimization
- URL: http://arxiv.org/abs/2406.09979v2
- Date: Wed, 4 Sep 2024 12:33:24 GMT
- Title: HIRO: Hierarchical Information Retrieval Optimization
- Authors: Krish Goel, Mahek Chandak,
- Abstract summary: Retrieval-Augmented Generation (RAG) has revolutionized natural language processing by dynamically integrating external knowledge into Large Language Models (LLMs)
Recent implementations of RAG leverage hierarchical data structures, which organize documents at various levels of summarization and information density.
This complexity can cause LLMs to "choke" on information overload, necessitating more sophisticated querying mechanisms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) has revolutionized natural language processing by dynamically integrating external knowledge into Large Language Models (LLMs), addressing their limitation of static training datasets. Recent implementations of RAG leverage hierarchical data structures, which organize documents at various levels of summarization and information density. This complexity, however, can cause LLMs to "choke" on information overload, necessitating more sophisticated querying mechanisms. In this context, we introduce Hierarchical Information Retrieval Optimization (HIRO), a novel querying approach that employs a Depth-First Search (DFS)-based recursive similarity score calculation and branch pruning. This method uniquely minimizes the context delivered to the LLM without informational loss, effectively managing the challenge of excessive data. HIRO's refined approach is validated by a 10.85% improvement in performance on the NarrativeQA dataset.
Related papers
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
Large language models (LLMs) process input contexts through a causal and sequential perspective.
This paper presents a novel concept of context structurization.
Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements.
arXiv Detail & Related papers (2024-07-23T12:33:58Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Enhancing Knowledge Retrieval with In-Context Learning and Semantic Search through Generative AI [3.9773527114058855]
We propose a novel methodology that combines the generative capabilities of Large Language Models with the fast and accurate retrieval capabilities of vector databases.
The developed model, Generative Text Retrieval (GTR), is adaptable to both unstructured and structured data with minor refinement.
The refined model, Generative Tabular Text Retrieval (GTR-T), demonstrated its efficiency in large database querying.
arXiv Detail & Related papers (2024-06-13T23:08:06Z) - Contextual Categorization Enhancement through LLMs Latent-Space [0.31263095816232184]
We propose leveraging transformer models to distill semantic information from texts in the Wikipedia dataset.
We then explore different approaches based on these encodings to assess and enhance the semantic identity of the categories.
arXiv Detail & Related papers (2024-04-25T09:20:51Z) - Improving Retrieval for RAG based Question Answering Models on Financial Documents [0.046603287532620746]
This paper explores the existing constraints of RAG pipelines and introduces methodologies for enhancing text retrieval.
It delves into strategies such as sophisticated chunking techniques, query expansion, the incorporation of metadata annotations, the application of re-ranking algorithms, and the fine-tuning of embedding algorithms.
arXiv Detail & Related papers (2024-03-23T00:49:40Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
We develop an emphIterative Reading-then-Reasoning(IRR) approach for solving question answering tasks based on structured data.
Our approach can significantly boost the performance of ChatGPT and achieve comparable performance against the full-data supervised-tuning baselines.
arXiv Detail & Related papers (2023-05-16T17:45:23Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.