Self-Supervised and Few-Shot Learning for Robust Bioaerosol Monitoring
- URL: http://arxiv.org/abs/2406.09984v1
- Date: Fri, 14 Jun 2024 12:48:26 GMT
- Title: Self-Supervised and Few-Shot Learning for Robust Bioaerosol Monitoring
- Authors: Adrian Willi, Pascal Baumann, Sophie Erb, Fabian Gröger, Yanick Zeder, Simone Lionetti,
- Abstract summary: We show that self-supervised learning and few-shot learning can be combined to classify holographic images of bioaerosol particles.
Our findings suggest that real-time bioaerosol monitoring can be substantially optimized.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Real-time bioaerosol monitoring is improving the quality of life for people affected by allergies, but it often relies on deep-learning models which pose challenges for widespread adoption. These models are typically trained in a supervised fashion and require considerable effort to produce large amounts of annotated data, an effort that must be repeated for new particles, geographical regions, or measurement systems. In this work, we show that self-supervised learning and few-shot learning can be combined to classify holographic images of bioaerosol particles using a large collection of unlabelled data and only a few examples for each particle type. We first demonstrate that self-supervision on pictures of unidentified particles from ambient air measurements enhances identification even when labelled data is abundant. Most importantly, it greatly improves few-shot classification when only a handful of labelled images are available. Our findings suggest that real-time bioaerosol monitoring workflows can be substantially optimized, and the effort required to adapt models for different situations considerably reduced.
Related papers
- Feedback Efficient Online Fine-Tuning of Diffusion Models [52.170384048274364]
We propose a novel reinforcement learning procedure that efficiently explores on the manifold of feasible samples.
We present a theoretical analysis providing a regret guarantee, as well as empirical validation across three domains.
arXiv Detail & Related papers (2024-02-26T07:24:32Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
Text-to-image diffusion models have shown great potential for benefiting image recognition.
Although promising, there has been inadequate exploration dedicated to unsupervised learning on diffusion-generated images.
We introduce customized solutions by fully exploiting the aforementioned free attention masks.
arXiv Detail & Related papers (2023-08-13T10:07:46Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - Unpaired Image-to-Image Translation with Limited Data to Reveal Subtle
Phenotypes [0.5076419064097732]
We present an improved CycleGAN architecture that employs self-supervised discriminators to alleviate the need for numerous images.
We also provide results obtained with small biological datasets on obvious and non-obvious cell phenotype variations.
arXiv Detail & Related papers (2023-01-21T16:25:04Z) - Fast spline detection in high density microscopy data [0.0]
In microscopy studies of multi-organism systems, the problem of collision and overlap remains challenging.
Here, we develop a novel end-to-end deep learning approach to extract precise shape trajectories of generally motile and overlapping splines.
We present it in the setting of and exemplify its usability on dense experiments of crawling Caenorhabditis elegans.
arXiv Detail & Related papers (2023-01-11T13:40:05Z) - An unobtrusive quality supervision approach for medical image annotation [8.203076178571576]
It is desirable that users should annotate unseen data and have an automated system to unobtrusively rate their performance.
We evaluate two methods the generation of synthetic individual cell images: conditional Generative Adversarial Networks and Diffusion Models.
Users could not detect 52.12% of generated images by proofing the feasibility to replace the original cells with synthetic cells without being noticed.
arXiv Detail & Related papers (2022-11-11T11:57:26Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
We show that ensembles of Data-efficient image Transformers (DeiTs) significantly outperform the previous state of the art (SOTA)
On all the data sets we test, we achieve a new SOTA, with a reduction of the error with respect to the previous SOTA ranging from 18.48% to 87.50%.
arXiv Detail & Related papers (2022-03-03T14:16:22Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern images from the same developmental stage are compared.
labeling training data with precise stages is very time-consuming even for biologists.
We propose a deep two-step low-shot learning framework to accurately classify ISH images using limited training images.
arXiv Detail & Related papers (2020-10-20T06:06:06Z) - Federated Learning for Computational Pathology on Gigapixel Whole Slide
Images [4.035591045544291]
We introduce privacy-preserving federated learning for gigapixel whole slide images in computational pathology.
We evaluate our approach on two different diagnostic problems using thousands of histology whole slide images with only slide-level labels.
arXiv Detail & Related papers (2020-09-21T21:56:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.