Bridging the Communication Gap: Artificial Agents Learning Sign Language through Imitation
- URL: http://arxiv.org/abs/2406.10043v1
- Date: Fri, 14 Jun 2024 13:50:29 GMT
- Title: Bridging the Communication Gap: Artificial Agents Learning Sign Language through Imitation
- Authors: Federico Tavella, Aphrodite Galata, Angelo Cangelosi,
- Abstract summary: This research explores acquiring non-verbal communication skills through learning from demonstrations.
In particular, we focus on imitation learning for artificial agents, exemplified by teaching a simulated humanoid American Sign Language.
We use computer vision and deep learning to extract information from videos, and reinforcement learning to enable the agent to replicate observed actions.
- Score: 6.1400257928108575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial agents, particularly humanoid robots, interact with their environment, objects, and people using cameras, actuators, and physical presence. Their communication methods are often pre-programmed, limiting their actions and interactions. Our research explores acquiring non-verbal communication skills through learning from demonstrations, with potential applications in sign language comprehension and expression. In particular, we focus on imitation learning for artificial agents, exemplified by teaching a simulated humanoid American Sign Language. We use computer vision and deep learning to extract information from videos, and reinforcement learning to enable the agent to replicate observed actions. Compared to other methods, our approach eliminates the need for additional hardware to acquire information. We demonstrate how the combination of these different techniques offers a viable way to learn sign language. Our methodology successfully teaches 5 different signs involving the upper body (i.e., arms and hands). This research paves the way for advanced communication skills in artificial agents.
Related papers
- Scaling up Multimodal Pre-training for Sign Language Understanding [96.17753464544604]
Sign language serves as the primary meaning of communication for the deaf-mute community.
To facilitate communication between the deaf-mute and hearing people, a series of sign language understanding (SLU) tasks have been studied.
These tasks investigate sign language topics from diverse perspectives and raise challenges in learning effective representation of sign language videos.
arXiv Detail & Related papers (2024-08-16T06:04:25Z) - ManiWAV: Learning Robot Manipulation from In-the-Wild Audio-Visual Data [28.36623343236893]
We introduce ManiWAV: an 'ear-in-hand' data collection device to collect in-the-wild human demonstrations with synchronous audio and visual feedback.
We show that our system can generalize to unseen in-the-wild environments by learning from diverse in-the-wild human demonstrations.
arXiv Detail & Related papers (2024-06-27T18:06:38Z) - Unveiling the pressures underlying language learning and use in neural networks, large language models, and humans: Lessons from emergent machine-to-machine communication [5.371337604556311]
We review three cases where mismatches between the emergent linguistic behavior of neural agents and humans were resolved.
We identify key pressures at play for language learning and emergence: communicative success, production effort, learnability, and other psycho-/sociolinguistic factors.
arXiv Detail & Related papers (2024-03-21T14:33:34Z) - AnySkill: Learning Open-Vocabulary Physical Skill for Interactive Agents [58.807802111818994]
We propose AnySkill, a novel hierarchical method that learns physically plausible interactions following open-vocabulary instructions.
Our approach begins by developing a set of atomic actions via a low-level controller trained via imitation learning.
An important feature of our method is the use of image-based rewards for the high-level policy, which allows the agent to learn interactions with objects without manual reward engineering.
arXiv Detail & Related papers (2024-03-19T15:41:39Z) - Towards More Human-like AI Communication: A Review of Emergent
Communication Research [0.0]
Emergent communication (Emecom) is a field of research aiming to develop artificial agents capable of using natural language.
In this review, we delineate all the common proprieties we find across the literature and how they relate to human interactions.
We identify two subcategories and highlight their characteristics and open challenges.
arXiv Detail & Related papers (2023-08-01T14:43:10Z) - Learning to Model the World with Language [100.76069091703505]
To interact with humans and act in the world, agents need to understand the range of language that people use and relate it to the visual world.
Our key idea is that agents should interpret such diverse language as a signal that helps them predict the future.
We instantiate this in Dynalang, an agent that learns a multimodal world model to predict future text and image representations.
arXiv Detail & Related papers (2023-07-31T17:57:49Z) - Language-Driven Representation Learning for Robotics [115.93273609767145]
Recent work in visual representation learning for robotics demonstrates the viability of learning from large video datasets of humans performing everyday tasks.
We introduce a framework for language-driven representation learning from human videos and captions.
We find that Voltron's language-driven learning outperform the prior-of-the-art, especially on targeted problems requiring higher-level control.
arXiv Detail & Related papers (2023-02-24T17:29:31Z) - Creating Multimodal Interactive Agents with Imitation and
Self-Supervised Learning [20.02604302565522]
A common vision from science fiction is that robots will one day inhabit our physical spaces, sense the world as we do, assist our physical labours, and communicate with us through natural language.
Here we study how to design artificial agents that can interact naturally with humans using the simplification of a virtual environment.
We show that imitation learning of human-human interactions in a simulated world, in conjunction with self-supervised learning, is sufficient to produce a multimodal interactive agent, which we call MIA, that successfully interacts with non-adversarial humans 75% of the time.
arXiv Detail & Related papers (2021-12-07T15:17:27Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
We study the task of few-shot $textitlanguage coordination$.
We require the lead agent to coordinate with a $textitpopulation$ of agents with different linguistic abilities.
This requires the ability to model the partner's beliefs, a vital component of human communication.
arXiv Detail & Related papers (2021-07-12T19:26:11Z) - Language-Conditioned Imitation Learning for Robot Manipulation Tasks [39.40937105264774]
We introduce a method for incorporating unstructured natural language into imitation learning.
At training time, the expert can provide demonstrations along with verbal descriptions in order to describe the underlying intent.
The training process then interrelates these two modalities to encode the correlations between language, perception, and motion.
The resulting language-conditioned visuomotor policies can be conditioned at runtime on new human commands and instructions.
arXiv Detail & Related papers (2020-10-22T21:49:08Z) - On the interaction between supervision and self-play in emergent
communication [82.290338507106]
We investigate the relationship between two categories of learning signals with the ultimate goal of improving sample efficiency.
We find that first training agents via supervised learning on human data followed by self-play outperforms the converse.
arXiv Detail & Related papers (2020-02-04T02:35:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.