Annotation Cost-Efficient Active Learning for Deep Metric Learning Driven Remote Sensing Image Retrieval
- URL: http://arxiv.org/abs/2406.10107v2
- Date: Mon, 5 Aug 2024 14:06:35 GMT
- Title: Annotation Cost-Efficient Active Learning for Deep Metric Learning Driven Remote Sensing Image Retrieval
- Authors: Genc Hoxha, Gencer Sumbul, Julia Henkel, Lars Möllenbrok, Begüm Demir,
- Abstract summary: ANNEAL aims to create a small but informative training set made up of similar and dissimilar image pairs.
The informativeness of image pairs is evaluated by combining uncertainty and diversity criteria.
This way of annotating images significantly reduces the annotation cost compared to annotating images with land-use land-cover class labels.
- Score: 3.2109665109975696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep metric learning (DML) has shown to be effective for content-based image retrieval (CBIR) in remote sensing (RS). Most of DML methods for CBIR rely on a high number of annotated images to accurately learn model parameters of deep neural networks (DNNs). However, gathering such data is time-consuming and costly. To address this, we propose an annotation cost-efficient active learning (ANNEAL) method tailored to DML-driven CBIR in RS. ANNEAL aims to create a small but informative training set made up of similar and dissimilar image pairs to be utilized for accurately learning a metric space. The informativeness of image pairs is evaluated by combining uncertainty and diversity criteria. To assess the uncertainty of image pairs, we introduce two algorithms: 1) metric-guided uncertainty estimation (MGUE); and 2) binary classifier guided uncertainty estimation (BCGUE). MGUE algorithm automatically estimates a threshold value that acts as a boundary between similar and dissimilar image pairs based on the distances in the metric space. The closer the similarity between image pairs is to the estimated threshold value the higher their uncertainty. BCGUE algorithm estimates the uncertainty of the image pairs based on the confidence of the classifier in assigning correct similarity labels. The diversity criterion is assessed through a clustering-based strategy. ANNEAL combines either MGUE or BCGUE algorithm with the clustering-based strategy to select the most informative image pairs, which are then labelled by expert annotators as similar or dissimilar. This way of annotating images significantly reduces the annotation cost compared to annotating images with land-use land-cover class labels. Experimental results on two RS benchmark datasets demonstrate the effectiveness of our method. The code of this work is publicly available at \url{https://git.tu-berlin.de/rsim/anneal_tgrs}.
Related papers
- Introspective Deep Metric Learning [91.47907685364036]
We propose an introspective deep metric learning framework for uncertainty-aware comparisons of images.
The proposed IDML framework improves the performance of deep metric learning through uncertainty modeling.
arXiv Detail & Related papers (2023-09-11T16:21:13Z) - Annotation Cost Efficient Active Learning for Content Based Image
Retrieval [1.6624384368855525]
We present an annotation cost efficient active learning (AL) method (denoted as ANNEAL)
The proposed method aims to iteratively enrich the training set by annotating the most informative image pairs as similar or dissimilar.
The code of ANNEAL is publicly available at https://git.tu-berlin.de/rsim/ANNEAL.
arXiv Detail & Related papers (2023-06-20T15:33:24Z) - Class Anchor Margin Loss for Content-Based Image Retrieval [97.81742911657497]
We propose a novel repeller-attractor loss that falls in the metric learning paradigm, yet directly optimize for the L2 metric without the need of generating pairs.
We evaluate the proposed objective in the context of few-shot and full-set training on the CBIR task, by using both convolutional and transformer architectures.
arXiv Detail & Related papers (2023-06-01T12:53:10Z) - Introspective Deep Metric Learning for Image Retrieval [80.29866561553483]
We argue that a good similarity model should consider the semantic discrepancies with caution to better deal with ambiguous images for more robust training.
We propose to represent an image using not only a semantic embedding but also an accompanying uncertainty embedding, which describes the semantic characteristics and ambiguity of an image, respectively.
The proposed IDML framework improves the performance of deep metric learning through uncertainty modeling and attains state-of-the-art results on the widely used CUB-200-2011, Cars196, and Stanford Online Products datasets.
arXiv Detail & Related papers (2022-05-09T17:51:44Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
We propose AugNet, a new deep learning training paradigm to learn image features from a collection of unlabeled pictures.
Our experiments demonstrate that the method is able to represent the image in low dimensional space.
Unlike many deep-learning-based image retrieval algorithms, our approach does not require access to external annotated datasets.
arXiv Detail & Related papers (2021-06-11T09:02:30Z) - A Novel Triplet Sampling Method for Multi-Label Remote Sensing Image
Search and Retrieval [1.123376893295777]
A common approach for learning the metric space relies on the selection of triplets of similar (positive) and dissimilar (negative) images.
We propose a novel triplet sampling method in the framework of deep neural networks (DNNs) defined for multi-label RS CBIR problems.
arXiv Detail & Related papers (2021-05-08T09:16:09Z) - Active Ensemble Deep Learning for Polarimetric Synthetic Aperture Radar
Image Classification [10.80252725670625]
In this letter, we take the advantage of active learning and propose active ensemble deep learning (AEDL) for PolSAR image classification.
We show that only 35% of the predicted labels of a deep learning model's snapshots near its convergence were exactly the same.
Using the snapshots committee to give out the informativeness of unlabeled data, the proposed AEDL achieved better performance on two real PolSAR images compared with standard active learning strategies.
arXiv Detail & Related papers (2020-06-29T01:40:54Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z) - DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning [122.51237307910878]
We develop methods for few-shot image classification from a new perspective of optimal matching between image regions.
We employ the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations.
To generate the important weights of elements in the formulation, we design a cross-reference mechanism.
arXiv Detail & Related papers (2020-03-15T08:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.