Training-free Camera Control for Video Generation
- URL: http://arxiv.org/abs/2406.10126v2
- Date: Fri, 6 Sep 2024 10:25:23 GMT
- Title: Training-free Camera Control for Video Generation
- Authors: Chen Hou, Guoqiang Wei, Yan Zeng, Zhibo Chen,
- Abstract summary: We propose a training-free and robust solution to offer camera movement control for off-the-shelf video diffusion models.
Our method does not require any supervised finetuning on camera-annotated datasets or self-supervised training via data augmentation.
- Score: 19.526135830699882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a training-free and robust solution to offer camera movement control for off-the-shelf video diffusion models. Unlike previous work, our method does not require any supervised finetuning on camera-annotated datasets or self-supervised training via data augmentation. Instead, it can be plugged and played with most pretrained video diffusion models and generate camera controllable videos with a single image or text prompt as input. The inspiration of our work comes from the layout prior that intermediate latents hold towards generated results, thus rearranging noisy pixels in them will make output content reallocated as well. As camera move could also be seen as a kind of pixel rearrangement caused by perspective change, videos could be reorganized following specific camera motion if their noisy latents change accordingly. Established on this, we propose our method CamTrol, which enables robust camera control for video diffusion models. It is achieved by a two-stage process. First, we model image layout rearrangement through explicit camera movement in 3D point cloud space. Second, we generate videos with camera motion using layout prior of noisy latents formed by a series of rearranged images. Extensive experiments have demonstrated the robustness our method holds in controlling camera motion of generated videos. Furthermore, we show that our method can produce impressive results in generating 3D rotation videos with dynamic content. Project page at https://lifedecoder.github.io/CamTrol/.
Related papers
- Cavia: Camera-controllable Multi-view Video Diffusion with View-Integrated Attention [62.2447324481159]
Cavia is a novel framework for camera-controllable, multi-view video generation.
Our framework extends the spatial and temporal attention modules, improving both viewpoint and temporal consistency.
Cavia is the first of its kind that allows the user to specify distinct camera motion while obtaining object motion.
arXiv Detail & Related papers (2024-10-14T17:46:32Z) - VD3D: Taming Large Video Diffusion Transformers for 3D Camera Control [74.5434726968562]
We tame transformers video for 3D camera control using a ControlNet-like conditioning mechanism based on Plucker coordinates.
Our work is the first to enable camera control for transformer-based video diffusion models.
arXiv Detail & Related papers (2024-07-17T17:59:05Z) - CamCo: Camera-Controllable 3D-Consistent Image-to-Video Generation [117.16677556874278]
We introduce CamCo, which allows fine-grained Camera pose Control for image-to-video generation.
To enhance 3D consistency in the videos produced, we integrate an epipolar attention module in each attention block.
Our experiments show that CamCo significantly improves 3D consistency and camera control capabilities compared to previous models.
arXiv Detail & Related papers (2024-06-04T17:27:19Z) - Collaborative Video Diffusion: Consistent Multi-video Generation with Camera Control [70.17137528953953]
Collaborative video diffusion (CVD) is trained on top of a state-of-the-art camera-control module for video generation.
CVD generates multiple videos rendered from different camera trajectories with significantly better consistency than baselines.
arXiv Detail & Related papers (2024-05-27T17:58:01Z) - CamViG: Camera Aware Image-to-Video Generation with Multimodal Transformers [18.67069364925506]
We propose to add virtual 3D camera controls to generative video methods by conditioning generated video on an encoding of three-dimensional camera movement.
Results demonstrate that we are (1) able to successfully control the camera during video generation, starting from a single frame and a camera signal, and (2) we demonstrate the accuracy of the generated 3D camera paths using traditional computer vision methods.
arXiv Detail & Related papers (2024-05-21T20:54:27Z) - MotionMaster: Training-free Camera Motion Transfer For Video Generation [48.706578330771386]
We propose a novel training-free video motion transfer model, which disentangles camera motions and object motions in source videos.
Our model can effectively decouple camera-object motion and apply the decoupled camera motion to a wide range of controllable video generation tasks.
arXiv Detail & Related papers (2024-04-24T10:28:54Z) - CameraCtrl: Enabling Camera Control for Text-to-Video Generation [86.36135895375425]
Controllability plays a crucial role in video generation since it allows users to create desired content.
Existing models largely overlooked the precise control of camera pose that serves as a cinematic language.
We introduce CameraCtrl, enabling accurate camera pose control for text-to-video(T2V) models.
arXiv Detail & Related papers (2024-04-02T16:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.