Malicious URL Detection using optimized Hist Gradient Boosting Classifier based on grid search method
- URL: http://arxiv.org/abs/2406.10286v1
- Date: Wed, 12 Jun 2024 11:16:30 GMT
- Title: Malicious URL Detection using optimized Hist Gradient Boosting Classifier based on grid search method
- Authors: Mohammad Maftoun, Nima Shadkam, Seyedeh Somayeh Salehi Komamardakhi, Zulkefli Mansor, Javad Hassannataj Joloudari,
- Abstract summary: Trusting the accuracy of data inputted on online platforms can be difficult due to the possibility of malicious websites gathering information for unlawful reasons.
To detect the risk posed by malicious websites, it is proposed to utilize Machine Learning (ML)-based techniques.
The dataset used contains 1781 records of malicious benign website data with 13 features.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Trusting the accuracy of data inputted on online platforms can be difficult due to the possibility of malicious websites gathering information for unlawful reasons. Analyzing each website individually becomes challenging with the presence of such malicious sites, making it hard to efficiently list all Uniform Resource Locators (URLs) on a blacklist. This ongoing challenge emphasizes the crucial need for strong security measures to safeguard against potential threats and unauthorized data collection. To detect the risk posed by malicious websites, it is proposed to utilize Machine Learning (ML)-based techniques. To this, we used several ML techniques such as Hist Gradient Boosting Classifier (HGBC), K-Nearest Neighbor (KNN), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP), Light Gradient Boosting Machine (LGBM), and Support Vector Machine (SVM) for detection of the benign and malicious website dataset. The dataset used contains 1781 records of malicious and benign website data with 13 features. First, we investigated missing value imputation on the dataset. Then, we normalized this data by scaling to a range of zero and one. Next, we utilized the Synthetic Minority Oversampling Technique (SMOTE) to balance the training data since the data set was unbalanced. After that, we applied ML algorithms to the balanced training set. Meanwhile, all algorithms were optimized based on grid search. Finally, the models were evaluated based on accuracy, precision, recall, F1 score, and the Area Under the Curve (AUC) metrics. The results demonstrated that the HGBC classifier has the best performance in terms of the mentioned metrics compared to the other classifiers.
Related papers
- Training on the Benchmark Is Not All You Need [52.01920740114261]
We propose a simple and effective data leakage detection method based on the contents of multiple-choice options.
Our method is able to work under black-box conditions without access to model training data or weights.
We evaluate the degree of data leakage of 31 mainstream open-source LLMs on four benchmark datasets.
arXiv Detail & Related papers (2024-09-03T11:09:44Z) - Challenging Machine Learning Algorithms in Predicting Vulnerable JavaScript Functions [2.243674903279612]
State-of-the-art machine learning techniques can predict functions with possible security vulnerabilities in JavaScript programs.
Best performing algorithm was KNN, which created a model for the prediction of vulnerable functions with an F-measure of 0.76.
Deep learning, tree and forest based classifiers, and SVM were competitive with F-measures over 0.70.
arXiv Detail & Related papers (2024-05-12T08:23:42Z) - Performance evaluation of Machine learning algorithms for Intrusion Detection System [0.40964539027092917]
This paper focuses on intrusion detection systems (IDSs) analysis using Machine Learning (ML) techniques.
We analyze the KDD CUP-'99' intrusion detection dataset used for training and validating ML models.
arXiv Detail & Related papers (2023-10-01T06:35:37Z) - Machine Learning Force Fields with Data Cost Aware Training [94.78998399180519]
Machine learning force fields (MLFF) have been proposed to accelerate molecular dynamics (MD) simulation.
Even for the most data-efficient MLFFs, reaching chemical accuracy can require hundreds of frames of force and energy labels.
We propose a multi-stage computational framework -- ASTEROID, which lowers the data cost of MLFFs by leveraging a combination of cheap inaccurate data and expensive accurate data.
arXiv Detail & Related papers (2023-06-05T04:34:54Z) - Rapid Adaptation in Online Continual Learning: Are We Evaluating It
Right? [135.71855998537347]
We revisit the common practice of evaluating adaptation of Online Continual Learning (OCL) algorithms through the metric of online accuracy.
We show that this metric is unreliable, as even vacuous blind classifiers can achieve unrealistically high online accuracy.
Existing OCL algorithms can also achieve high online accuracy, but perform poorly in retaining useful information.
arXiv Detail & Related papers (2023-05-16T08:29:33Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Knockoffs-SPR: Clean Sample Selection in Learning with Noisy Labels [56.81761908354718]
We propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels.
Knockoffs-SPR can be regarded as a sample selection module for a standard supervised training pipeline.
We further combine it with a semi-supervised algorithm to exploit the support of noisy data as unlabeled data.
arXiv Detail & Related papers (2023-01-02T07:13:28Z) - Fraud Detection Using Optimized Machine Learning Tools Under Imbalance
Classes [0.304585143845864]
Fraud detection with smart versions of machine learning (ML) tools is essential to assure safety.
We investigate four state-of-the-art ML techniques, namely, logistic regression, decision trees, random forest, and extreme gradient boost.
For phishing website URLs and credit card fraud transaction datasets, the results indicate that extreme gradient boost trained on the original data shows trustworthy performance.
arXiv Detail & Related papers (2022-09-04T15:30:23Z) - Semantic Preserving Adversarial Attack Generation with Autoencoder and
Genetic Algorithm [29.613411948228563]
Little noises can fool state-of-the-art models into making incorrect predictions.
We propose a black-box attack, which modifies latent features of data extracted by an autoencoder.
We trained autoencoders on MNIST and CIFAR-10 datasets and found optimal adversarial perturbations using a genetic algorithm.
arXiv Detail & Related papers (2022-08-25T17:27:26Z) - An Adversarial Attack Analysis on Malicious Advertisement URL Detection
Framework [22.259444589459513]
Malicious advertisement URLs pose a security risk since they are the source of cyber-attacks.
Existing malicious URL detection techniques are limited and to handle unseen features as well as generalize to test data.
In this study, we extract a novel set of lexical and web-scrapped features and employ machine learning technique to set up system for fraudulent advertisement URLs detection.
arXiv Detail & Related papers (2022-04-27T20:06:22Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.