Learning Flexible Time-windowed Granger Causality Integrating Heterogeneous Interventional Time Series Data
- URL: http://arxiv.org/abs/2406.10419v1
- Date: Fri, 14 Jun 2024 21:36:00 GMT
- Title: Learning Flexible Time-windowed Granger Causality Integrating Heterogeneous Interventional Time Series Data
- Authors: Ziyi Zhang, Shaogang Ren, Xiaoning Qian, Nick Duffield,
- Abstract summary: We present a theoretically-grounded method that infers Granger causal structure and identifies unknown targets by leveraging heterogeneous interventional time series data.
Our method outperforms several robust baseline methods in learning Granger causal structure from interventional time series data.
- Score: 21.697069894721448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Granger causality, commonly used for inferring causal structures from time series data, has been adopted in widespread applications across various fields due to its intuitive explainability and high compatibility with emerging deep neural network prediction models. To alleviate challenges in better deciphering causal structures unambiguously from time series, the use of interventional data has become a practical approach. However, existing methods have yet to be explored in the context of imperfect interventions with unknown targets, which are more common and often more beneficial in a wide range of real-world applications. Additionally, the identifiability issues of Granger causality with unknown interventional targets in complex network models remain unsolved. Our work presents a theoretically-grounded method that infers Granger causal structure and identifies unknown targets by leveraging heterogeneous interventional time series data. We further illustrate that learning Granger causal structure and recovering interventional targets can mutually promote each other. Comparative experiments demonstrate that our method outperforms several robust baseline methods in learning Granger causal structure from interventional time series data.
Related papers
- Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
We propose a novel machine learning approach for inferring causal variables of a target variable from observations.
We employ a neural network trained to identify causality through supervised learning on simulated data.
Empirical results demonstrate the effectiveness of our method in identifying causal relationships within large-scale gene regulatory networks.
arXiv Detail & Related papers (2024-08-29T02:21:11Z) - Jacobian Regularizer-based Neural Granger Causality [45.902407376192656]
We propose a Jacobian Regularizer-based Neural Granger Causality (JRNGC) approach.
Our method eliminates the sparsity constraints of weights by leveraging an input-output Jacobian matrix regularizer.
Our proposed approach achieves competitive performance with the state-of-the-art methods for learning summary Granger causality and full-time Granger causality.
arXiv Detail & Related papers (2024-05-14T17:13:50Z) - Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal Discovery [49.084423861263524]
In this work, we propose a novel Gradient-based Intervention Targeting method, abbreviated GIT.
GIT 'trusts' the gradient estimator of a gradient-based causal discovery framework to provide signals for the intervention acquisition function.
We provide extensive experiments in simulated and real-world datasets and demonstrate that GIT performs on par with competitive baselines.
arXiv Detail & Related papers (2022-11-24T17:04:45Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDI operates in the continuous space of latent probabilistic representations of both causal structures and interventions.
In experiments on synthetic causal discovery tasks and simulated gene-expression data, BaCaDI outperforms related methods in identifying causal structures and intervention targets.
arXiv Detail & Related papers (2022-06-03T16:25:48Z) - Jacobian Granger Causal Neural Networks for Analysis of Stationary and
Nonstationary Data [19.347558051611827]
We introduce a neural network-based approach to Granger causality using the Jacobian as a measure of variable importance.
The resulting approach performs consistently well compared to other approaches in identifying Granger causal variables.
arXiv Detail & Related papers (2022-05-19T14:07:54Z) - Deep Recurrent Modelling of Granger Causality with Latent Confounding [0.0]
We propose a deep learning-based approach to model non-linear Granger causality by directly accounting for latent confounders.
We demonstrate the model performance on non-linear time series for which the latent confounder influences the cause and effect with different time lags.
arXiv Detail & Related papers (2022-02-23T03:26:22Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Inductive Granger Causal Modeling for Multivariate Time Series [49.29373497269468]
We propose an Inductive GRanger cAusal modeling (InGRA) framework for inductive Granger causality learning and common causal structure detection.
In particular, we train one global model for individuals with different Granger causal structures through a novel attention mechanism, called Granger causal attention.
The model can detect common causal structures for different individuals and infer Granger causal structures for newly arrived individuals.
arXiv Detail & Related papers (2021-02-10T07:48:00Z) - Interpretable Models for Granger Causality Using Self-explaining Neural
Networks [4.56877715768796]
We propose a novel framework for inferring Granger causality under nonlinear dynamics based on an extension of self-explaining neural networks.
This framework is more interpretable than other neural-network-based techniques for inferring Granger causality.
arXiv Detail & Related papers (2021-01-19T12:59:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.