MALLM-GAN: Multi-Agent Large Language Model as Generative Adversarial Network for Synthesizing Tabular Data
- URL: http://arxiv.org/abs/2406.10521v3
- Date: Wed, 02 Oct 2024 23:27:16 GMT
- Title: MALLM-GAN: Multi-Agent Large Language Model as Generative Adversarial Network for Synthesizing Tabular Data
- Authors: Yaobin Ling, Xiaoqian Jiang, Yejin Kim,
- Abstract summary: We propose a framework to generate synthetic (tabular) data powered by large language models (LLMs)
Our approach significantly enhance the quality of synthetic data generation in common scenarios with small sample sizes.
Our results demonstrate that our model outperforms several state-of-art models regarding generating higher quality synthetic data for downstream tasks while keeping privacy of the real data.
- Score: 10.217822818544475
- License:
- Abstract: In the era of big data, access to abundant data is crucial for driving research forward. However, such data is often inaccessible due to privacy concerns or high costs, particularly in healthcare domain. Generating synthetic (tabular) data can address this, but existing models typically require substantial amounts of data to train effectively, contradicting our objective to solve data scarcity. To address this challenge, we propose a novel framework to generate synthetic tabular data, powered by large language models (LLMs) that emulates the architecture of a Generative Adversarial Network (GAN). By incorporating data generation process as contextual information and utilizing LLM as the optimizer, our approach significantly enhance the quality of synthetic data generation in common scenarios with small sample sizes. Our experimental results on public and private datasets demonstrate that our model outperforms several state-of-art models regarding generating higher quality synthetic data for downstream tasks while keeping privacy of the real data.
Related papers
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize Malicious Network Traffic.
Our approach transforms numerical data into text, re-framing data generation as a language modeling task.
Our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data.
arXiv Detail & Related papers (2024-11-04T09:51:10Z) - Little Giants: Synthesizing High-Quality Embedding Data at Scale [71.352883755806]
We introduce SPEED, a framework that aligns open-source small models to efficiently generate large-scale embedding data.
SPEED uses only less than 1/10 of the GPT API calls, outperforming the state-of-the-art embedding model E5_mistral when both are trained solely on their synthetic data.
arXiv Detail & Related papers (2024-10-24T10:47:30Z) - Data Generation Using Large Language Models for Text Classification: An Empirical Case Study [15.447491854250227]
We use natural language understanding (NLU) models trained on synthetic data to assess the quality of synthetic data from different generation approaches.
This work provides an empirical analysis of the impact of these factors and offers recommendations for better data generation practices.
arXiv Detail & Related papers (2024-06-27T21:41:43Z) - Differentially Private Tabular Data Synthesis using Large Language Models [6.6376578496141585]
This paper introduces DP-LLMTGen -- a novel framework for differentially private tabular data synthesis.
DP-LLMTGen models sensitive datasets using a two-stage fine-tuning procedure.
It generates synthetic data through sampling the fine-tuned LLMs.
arXiv Detail & Related papers (2024-06-03T15:43:57Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - CasTGAN: Cascaded Generative Adversarial Network for Realistic Tabular
Data Synthesis [0.4999814847776097]
Generative adversarial networks (GANs) have drawn considerable attention in recent years for their proven capability in generating synthetic data.
The validity of the synthetic data and the underlying privacy concerns represent major challenges which are not sufficiently addressed.
arXiv Detail & Related papers (2023-07-01T16:52:18Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
Time series data are often scarce or highly sensitive, which precludes the sharing of data between researchers and industrial organizations.
We introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling of synthetic time series.
arXiv Detail & Related papers (2023-05-19T10:11:21Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Differentially Private Synthetic Medical Data Generation using
Convolutional GANs [7.2372051099165065]
We develop a differentially private framework for synthetic data generation using R'enyi differential privacy.
Our approach builds on convolutional autoencoders and convolutional generative adversarial networks to preserve some of the critical characteristics of the generated synthetic data.
We demonstrate that our model outperforms existing state-of-the-art models under the same privacy budget.
arXiv Detail & Related papers (2020-12-22T01:03:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.