Privacy-Preserving Heterogeneous Federated Learning for Sensitive Healthcare Data
- URL: http://arxiv.org/abs/2406.10563v2
- Date: Thu, 4 Jul 2024 14:10:00 GMT
- Title: Privacy-Preserving Heterogeneous Federated Learning for Sensitive Healthcare Data
- Authors: Yukai Xu, Jingfeng Zhang, Yujie Gu,
- Abstract summary: We propose a new framework termed Abstention-Aware Federated Voting (AAFV)
AAFV can collaboratively and confidentially train heterogeneous local models while simultaneously protecting the data privacy.
In particular, the proposed abstention-aware voting mechanism exploits a threshold-based abstention method to select high-confidence votes from heterogeneous local models.
- Score: 12.30620268528346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of healthcare where decentralized facilities are prevalent, machine learning faces two major challenges concerning the protection of data and models. The data-level challenge concerns the data privacy leakage when centralizing data with sensitive personal information. While the model-level challenge arises from the heterogeneity of local models, which need to be collaboratively trained while ensuring their confidentiality to address intellectual property concerns. To tackle these challenges, we propose a new framework termed Abstention-Aware Federated Voting (AAFV) that can collaboratively and confidentially train heterogeneous local models while simultaneously protecting the data privacy. This is achieved by integrating a novel abstention-aware voting mechanism and a differential privacy mechanism onto local models' predictions. In particular, the proposed abstention-aware voting mechanism exploits a threshold-based abstention method to select high-confidence votes from heterogeneous local models, which not only enhances the learning utility but also protects model confidentiality. Furthermore, we implement AAFV on two practical prediction tasks of diabetes and in-hospital patient mortality. The experiments demonstrate the effectiveness and confidentiality of AAFV in testing accuracy and privacy protection.
Related papers
- FedDP: Privacy-preserving method based on federated learning for histopathology image segmentation [2.864354559973703]
This paper addresses the dispersed nature and privacy sensitivity of medical image data by employing a federated learning framework.
The proposed method, FedDP, minimally impacts model accuracy while effectively safeguarding the privacy of cancer pathology image data.
arXiv Detail & Related papers (2024-11-07T08:02:58Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
We investigate the privacy implications of SecAgg in federated learning.
We show that SecAgg offers weak privacy against membership inference attacks even in a single training round.
Our findings underscore the imperative for additional privacy-enhancing mechanisms, such as noise injection.
arXiv Detail & Related papers (2024-03-26T15:07:58Z) - Privacy-Preserving Individual-Level COVID-19 Infection Prediction via
Federated Graph Learning [33.77030569632993]
We focus on developing a framework of privacy-preserving individual-level infection prediction based on federated learning (FL) and graph neural networks (GNN)
We propose Falcon, a Federated grAph Learning method for privacy-preserving individual-levelfetion predictiON.
Our methodology outperforms state-of-the-art algorithms and is able to protect user privacy against actual privacy attacks.
arXiv Detail & Related papers (2023-11-10T13:22:14Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - TeD-SPAD: Temporal Distinctiveness for Self-supervised
Privacy-preservation for video Anomaly Detection [59.04634695294402]
Video anomaly detection (VAD) without human monitoring is a complex computer vision task.
Privacy leakage in VAD allows models to pick up and amplify unnecessary biases related to people's personal information.
We propose TeD-SPAD, a privacy-aware video anomaly detection framework that destroys visual private information in a self-supervised manner.
arXiv Detail & Related papers (2023-08-21T22:42:55Z) - Vision Through the Veil: Differential Privacy in Federated Learning for
Medical Image Classification [15.382184404673389]
The proliferation of deep learning applications in healthcare calls for data aggregation across various institutions.
Privacy-preserving mechanisms are paramount in medical image analysis, where the data being sensitive in nature.
This study addresses the need by integrating differential privacy, a leading privacy-preserving technique, into a federated learning framework for medical image classification.
arXiv Detail & Related papers (2023-06-30T16:48:58Z) - Towards Blockchain-Assisted Privacy-Aware Data Sharing For Edge
Intelligence: A Smart Healthcare Perspective [19.208368632576153]
Linkage attack is a type of dominant attack in the privacy domain.
adversaries launch poisoning attacks to falsify the health data, which leads to misdiagnosing or even physical damage.
To protect private health data, we propose a personalized differential privacy model based on the trust levels among users.
arXiv Detail & Related papers (2023-06-29T02:06:04Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Hide-and-Seek Privacy Challenge [88.49671206936259]
The NeurIPS 2020 Hide-and-Seek Privacy Challenge is a novel two-tracked competition to accelerate progress in tackling both problems.
In our head-to-head format, participants in the synthetic data generation track (i.e. "hiders") and the patient re-identification track (i.e. "seekers") are directly pitted against each other by way of a new, high-quality intensive care time-series dataset.
arXiv Detail & Related papers (2020-07-23T15:50:59Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
We propose the first syntactic approach for offering privacy in the context of federated learning.
Our approach aims to maximize utility or model performance, while supporting a defensible level of privacy.
We perform a comprehensive empirical evaluation on two important problems in the healthcare domain, using real-world electronic health data of 1 million patients.
arXiv Detail & Related papers (2020-02-21T02:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.