Last-iterate Convergence Separation between Extra-gradient and Optimism in Constrained Periodic Games
- URL: http://arxiv.org/abs/2406.10605v1
- Date: Sat, 15 Jun 2024 11:50:36 GMT
- Title: Last-iterate Convergence Separation between Extra-gradient and Optimism in Constrained Periodic Games
- Authors: Yi Feng, Ping Li, Ioannis Panageas, Xiao Wang,
- Abstract summary: Last-iterate behaviors of learning algorithms in two-player zero-sum games have been extensively studied.
Most existing results establish these properties under the assumption that the game is time-independent.
In this paper, we investigate the last-iterate behaviors of optimistic and extra-gradient methods in the constrained periodic games.
- Score: 31.989723099872638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Last-iterate behaviors of learning algorithms in repeated two-player zero-sum games have been extensively studied due to their wide applications in machine learning and related tasks. Typical algorithms that exhibit the last-iterate convergence property include optimistic and extra-gradient methods. However, most existing results establish these properties under the assumption that the game is time-independent. Recently, (Feng et al, 2023) studied the last-iterate behaviors of optimistic and extra-gradient methods in games with a time-varying payoff matrix, and proved that in an unconstrained periodic game, extra-gradient method converges to the equilibrium while optimistic method diverges. This finding challenges the conventional wisdom that these two methods are expected to behave similarly as they do in time-independent games. However, compared to unconstrained games, games with constrains are more common both in practical and theoretical studies. In this paper, we investigate the last-iterate behaviors of optimistic and extra-gradient methods in the constrained periodic games, demonstrating that similar separation results for last-iterate convergence also hold in this setting.
Related papers
- The equivalence of dynamic and strategic stability under regularized
learning in games [33.74394172275373]
We examine the long-run behavior of regularized, no-regret learning in finite games.
We obtain an equivalence between strategic and dynamic stability.
We show that methods based on entropic regularization converge at a geometric rate.
arXiv Detail & Related papers (2023-11-04T14:07:33Z) - On the Convergence of No-Regret Learning Dynamics in Time-Varying Games [89.96815099996132]
We characterize the convergence of optimistic gradient descent (OGD) in time-varying games.
Our framework yields sharp convergence bounds for the equilibrium gap of OGD in zero-sum games.
We also provide new insights on dynamic regret guarantees in static games.
arXiv Detail & Related papers (2023-01-26T17:25:45Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
We study the problem of computing an approximate Nash equilibrium of continuous-action game without access to gradients.
We model players' strategies using artificial neural networks.
This paper is the first to solve general continuous-action games with unrestricted mixed strategies and without any gradient information.
arXiv Detail & Related papers (2022-11-29T05:16:41Z) - Asynchronous Gradient Play in Zero-Sum Multi-agent Games [25.690033495071923]
We study asynchronous gradient plays in zero-sum polymatrix games under delayed feedbacks.
To the best of our knowledge, this work is the first that aims to understand asynchronous gradient play in zero-sum polymatrix games.
arXiv Detail & Related papers (2022-11-16T15:37:23Z) - A unified stochastic approximation framework for learning in games [82.74514886461257]
We develop a flexible approximation framework for analyzing the long-run behavior of learning in games (both continuous and finite)
The proposed analysis template incorporates a wide array of popular learning algorithms, including gradient-based methods, exponential/multiplicative weights for learning in finite games, optimistic and bandit variants of the above, etc.
arXiv Detail & Related papers (2022-06-08T14:30:38Z) - No-Regret Learning in Time-Varying Zero-Sum Games [99.86860277006318]
Learning from repeated play in a fixed zero-sum game is a classic problem in game theory and online learning.
We develop a single parameter-free algorithm that simultaneously enjoys favorable guarantees under three performance measures.
Our algorithm is based on a two-layer structure with a meta-algorithm learning over a group of black-box base-learners satisfying a certain property.
arXiv Detail & Related papers (2022-01-30T06:10:04Z) - Online Learning in Periodic Zero-Sum Games [27.510231246176033]
We show that Poincar'e recurrence provably generalizes despite the complex, non-autonomous nature of these dynamical systems.
arXiv Detail & Related papers (2021-11-05T10:36:16Z) - Last-iterate Convergence in Extensive-Form Games [49.31256241275577]
We study last-iterate convergence of optimistic algorithms in sequential games.
We show that all of these algorithms enjoy last-iterate convergence, with some of them even converging exponentially fast.
arXiv Detail & Related papers (2021-06-27T22:02:26Z) - Finite-Time Last-Iterate Convergence for Multi-Agent Learning in Games [116.0771177871705]
We characterize the finite-time last-iterate convergence rate for joint OGD learning on $lambda$-cocoercive games.
We show, via a novel double-stopping time technique, that this adaptive algorithm achieves same finite-time last-iterate convergence rate as non-adaptive counterpart.
arXiv Detail & Related papers (2020-02-23T01:46:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.