Graph Neural Thompson Sampling
- URL: http://arxiv.org/abs/2406.10686v2
- Date: Thu, 20 Jun 2024 20:22:47 GMT
- Title: Graph Neural Thompson Sampling
- Authors: Shuang Wu, Arash A. Amini,
- Abstract summary: We consider an online decision-making problem with a reward function defined over graph-structured data.
We then propose textttGNN-TS, a Graph Neural Network powered Thompson Sampling (TS) algorithm which employs a GNN approximator for estimating the mean reward function.
- Score: 18.83205413952483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider an online decision-making problem with a reward function defined over graph-structured data. We formally formulate the problem as an instance of graph action bandit. We then propose \texttt{GNN-TS}, a Graph Neural Network (GNN) powered Thompson Sampling (TS) algorithm which employs a GNN approximator for estimating the mean reward function and the graph neural tangent features for uncertainty estimation. We prove that, under certain boundness assumptions on the reward function, GNN-TS achieves a state-of-the-art regret bound which is (1) sub-linear of order $\tilde{\mathcal{O}}((\tilde{d} T)^{1/2})$ in the number of interaction rounds, $T$, and a notion of effective dimension $\tilde{d}$, and (2) independent of the number of graph nodes. Empirical results validate that our proposed \texttt{GNN-TS} exhibits competitive performance and scales well on graph action bandit problems.
Related papers
- Robust Graph Neural Network based on Graph Denoising [10.564653734218755]
Graph Neural Networks (GNNs) have emerged as a notorious alternative to address learning problems dealing with non-Euclidean datasets.
This work proposes a robust implementation of GNNs that explicitly accounts for the presence of perturbations in the observed topology.
arXiv Detail & Related papers (2023-12-11T17:43:57Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Graph Neural Network Bandits [89.31889875864599]
We consider the bandit optimization problem with the reward function defined over graph-structured data.
Key challenges in this setting are scaling to large domains, and to graphs with many nodes.
We show that graph neural networks (GNNs) can be used to estimate the reward function.
arXiv Detail & Related papers (2022-07-13T18:12:36Z) - Bandits for Structure Perturbation-based Black-box Attacks to Graph
Neural Networks with Theoretical Guarantees [60.61846004535707]
Graph neural networks (GNNs) have achieved state-of-the-art performance in many graph-based tasks.
An attacker can mislead GNN models by slightly perturbing the graph structure.
In this paper, we consider black-box attacks to GNNs with structure perturbation as well as with theoretical guarantees.
arXiv Detail & Related papers (2022-05-07T04:17:25Z) - The Exact Class of Graph Functions Generated by Graph Neural Networks [43.25172578943894]
Graph Neural Network (GNN) whose output is identical to the graph function?
In this paper, we fully answer this question and characterize the class of graph problems that can be represented by GNNs.
We show that this condition can be efficiently verified by checking quadratically many constraints.
arXiv Detail & Related papers (2022-02-17T18:54:27Z) - On the approximation capability of GNNs in node
classification/regression tasks [4.141514895639094]
Graph Neural Networks (GNNs) are a broad class of connectionist models for graph processing.
We show that GNNs are universal approximators in probability for node classification/regression tasks.
arXiv Detail & Related papers (2021-06-16T17:46:51Z) - Graph Neural Networks with Local Graph Parameters [1.8600631687568656]
Local graph parameters can be added to any Graph Neural Networks (GNNs) architecture.
Our results connect GNNs with deep results in finite model theory and finite variable logics.
arXiv Detail & Related papers (2021-06-12T07:43:51Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.