Calibrating Neural Networks' parameters through Optimal Contraction in a Prediction Problem
- URL: http://arxiv.org/abs/2406.10703v2
- Date: Wed, 19 Jun 2024 14:16:03 GMT
- Title: Calibrating Neural Networks' parameters through Optimal Contraction in a Prediction Problem
- Authors: Valdes Gonzalo,
- Abstract summary: The paper details how a recurrent neural networks (RNN) can be transformed into a contraction in a domain where its parameters are linear.
It then demonstrates that a prediction problem modeled through an RNN, with a specific regularization term in the loss function, can have its first-order conditions expressed analytically.
We establish that, if certain conditions are met, optimal parameters exist, and can be found through a straightforward algorithm to any desired precision.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a novel approach to ensure the existence and uniqueness of optimal parameters in neural networks. The paper details how a recurrent neural networks (RNN) can be transformed into a contraction in a domain where its parameters are linear. It then demonstrates that a prediction problem modeled through an RNN, with a specific regularization term in the loss function, can have its first-order conditions expressed analytically. This system of equations is reduced to two matrix equations involving Sylvester equations, which can be partially solved. We establish that, if certain conditions are met, optimal parameters exist, are unique, and can be found through a straightforward algorithm to any desired precision. Also, as the number of neurons grows the conditions of convergence become easier to fulfill. Feedforward neural networks (FNNs) are also explored by including linear constraints on parameters. According to our model, incorporating loops (with fixed or variable weights) will produce loss functions that train easier, because it assures the existence of a region where an iterative method converges.
Related papers
- Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems [13.285775352653546]
This paper proposes a system of neural differential equations representing first- and second-order score functions along trajectories based on deep neural networks.
We reformulate the mean viscous field control (MFC) problem with individual noises into an unconstrained optimization problem framed by the proposed neural ODE system.
arXiv Detail & Related papers (2024-09-24T21:45:55Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.
A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.
In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - Neural Parameter Regression for Explicit Representations of PDE Solution Operators [22.355460388065964]
We introduce Neural Regression (NPR), a novel framework specifically developed for learning solution operators in Partial Differential Equations (PDEs)
NPR employs Physics-Informed Neural Network (PINN, Raissi et al., 2021) techniques to regress Neural Network (NN) parameters.
The framework shows remarkable adaptability to new initial and boundary conditions, allowing for rapid fine-tuning and inference.
arXiv Detail & Related papers (2024-03-19T14:30:56Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Adaptive neural domain refinement for solving time-dependent
differential equations [0.0]
A classic approach for solving differential equations with neural networks builds upon neural forms, which employ the differential equation with a discretisation of the solution domain.
It would be desirable to transfer such important and successful strategies to the field of neural network based solutions.
We propose a novel adaptive neural approach to meet this aim for solving time-dependent problems.
arXiv Detail & Related papers (2021-12-23T13:19:07Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.