Bayesian Networks and Machine Learning for COVID-19 Severity Explanation and Demographic Symptom Classification
- URL: http://arxiv.org/abs/2406.10807v2
- Date: Tue, 18 Jun 2024 02:20:19 GMT
- Title: Bayesian Networks and Machine Learning for COVID-19 Severity Explanation and Demographic Symptom Classification
- Authors: Oluwaseun T. Ajayi, Yu Cheng,
- Abstract summary: We present a three-stage data-driven approach to distill the hidden information about COVID-19.
The first stage employs a Bayesian network structure learning method to identify the causal relationships among COVID-19 symptoms.
As a second stage, the output serves as a useful guide to train an unsupervised machine learning (ML) algorithm.
The final stage then leverages the labels obtained from clustering to train a demographic symptom identification model.
- Score: 12.40025057417184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the prevailing efforts to combat the coronavirus disease 2019 (COVID-19) pandemic, there are still uncertainties that are yet to be discovered about its spread, future impact, and resurgence. In this paper, we present a three-stage data-driven approach to distill the hidden information about COVID-19. The first stage employs a Bayesian network structure learning method to identify the causal relationships among COVID-19 symptoms and their intrinsic demographic variables. As a second stage, the output from the Bayesian network structure learning, serves as a useful guide to train an unsupervised machine learning (ML) algorithm that uncovers the similarities in patients' symptoms through clustering. The final stage then leverages the labels obtained from clustering to train a demographic symptom identification (DSID) model which predicts a patient's symptom class and the corresponding demographic probability distribution. We applied our method on the COVID-19 dataset obtained from the Centers for Disease Control and Prevention (CDC) in the United States. Results from the experiments show a testing accuracy of 99.99%, as against the 41.15% accuracy of a heuristic ML method. This strongly reveals the viability of our Bayesian network and ML approach in understanding the relationship between the virus symptoms, and providing insights on patients' stratification towards reducing the severity of the virus.
Related papers
- COVID-19 Detection Based on Blood Test Parameters using Various Artificial Intelligence Methods [1.2408125305560274]
In 2019, the world faced a new challenge: a COVID-19 disease caused by the novel coronavirus, SARS-CoV-2.
This study aimed to differentiate COVID-19 patients from others using self-categorizing classifiers and employing various AI methods.
arXiv Detail & Related papers (2024-04-02T22:49:25Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
We show that preserving the order of the amino acids helps the underlying classifiers to achieve better performance.
We also show the importance of the different amino acids which play a key role in identifying variants and how they coincide with those reported by the USA's Centers for Disease Control and Prevention (CDC)
arXiv Detail & Related papers (2021-08-07T15:08:15Z) - DuCN: Dual-children Network for Medical Diagnosis and Similar Case
Recommendation towards COVID-19 [7.228593209504566]
Early detection of coronavirus disease 2019 (COVID-19) helps to treat patients timely and increase the cure rate.
We propose a novel deep learning based detection and similar case recommendation network to help control the epidemic.
arXiv Detail & Related papers (2021-08-03T15:46:53Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - Classification supporting COVID-19 diagnostics based on patient survey
data [82.41449972618423]
logistic regression and XGBoost classifiers, that allow for effective screening of patients for COVID-19 were generated.
The obtained classification models provided the basis for the DECODE service (decode.polsl.pl), which can serve as support in screening patients with COVID-19 disease.
This data set consists of more than 3,000 examples is based on questionnaires collected at a hospital in Poland.
arXiv Detail & Related papers (2020-11-24T17:44:01Z) - COVID-FACT: A Fully-Automated Capsule Network-based Framework for
Identification of COVID-19 Cases from Chest CT scans [29.327290778950324]
We propose a two-stage fully-automated framework for identification of COVID-19 positive cases referred to as the "COVID-FACT"
COVID-FACT detects slices with infection, and identifies positive COVID-19 cases using an in-house CT scan dataset.
Based on our experiments, COVID-FACT achieves an accuracy of 90.82%, a sensitivity of 94.55%, a specificity of 86.04%, and an Area Under the Curve (AUC) of 0.98, while depending on far less supervision and annotation.
arXiv Detail & Related papers (2020-10-30T03:30:22Z) - Semi-supervised Neural Networks solve an inverse problem for modeling
Covid-19 spread [61.9008166652035]
We study the spread of COVID-19 using a semi-supervised neural network.
We assume a passive part of the population remains isolated from the virus dynamics.
arXiv Detail & Related papers (2020-10-10T19:33:53Z) - Analysing the impact of global demographic characteristics over the
COVID-19 spread using class rule mining and pattern matching [8.025086113117291]
This study presents an intelligent approach to investigate the multi-dimensional associations between demographic attributes and COVID-19 global variations.
We gather multiple demographic attributes and COVID-19 infection data from reliable sources, which are then processed by intelligent algorithms to identify the significant associations and patterns within the data.
arXiv Detail & Related papers (2020-09-27T18:43:18Z) - Deep Learning Models for Early Detection and Prediction of the spread of
Novel Coronavirus (COVID-19) [4.213555705835109]
SARS-CoV2 is continuing to spread globally and has become a pandemic.
There is an urgent need to develop machine learning techniques to predict the spread of COVID-19.
arXiv Detail & Related papers (2020-07-29T10:14:11Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.