Robust Channel Learning for Large-Scale Radio Speaker Verification
- URL: http://arxiv.org/abs/2406.10956v1
- Date: Sun, 16 Jun 2024 14:17:57 GMT
- Title: Robust Channel Learning for Large-Scale Radio Speaker Verification
- Authors: Wenhao Yang, Jianguo Wei, Wenhuan Lu, Lei Li, Xugang Lu,
- Abstract summary: We present a Channel Robust Speaker Learning (CRSL) framework that enhances the robustness of the current speaker verification pipeline.
Our framework introduces an augmentation module that mitigates bandwidth variations in radio speech datasets.
We also propose an efficient fine-tuning method that reduces the need for extensive additional training time and large amounts of data.
- Score: 30.332141166518287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research in speaker verification has increasingly focused on achieving robust and reliable recognition under challenging channel conditions and noisy environments. Identifying speakers in radio communications is particularly difficult due to inherent limitations such as constrained bandwidth and pervasive noise interference. To address this issue, we present a Channel Robust Speaker Learning (CRSL) framework that enhances the robustness of the current speaker verification pipeline, considering data source, data augmentation, and the efficiency of model transfer processes. Our framework introduces an augmentation module that mitigates bandwidth variations in radio speech datasets by manipulating the bandwidth of training inputs. It also addresses unknown noise by introducing noise within the manifold space. Additionally, we propose an efficient fine-tuning method that reduces the need for extensive additional training time and large amounts of data. Moreover, we develop a toolkit for assembling a large-scale radio speech corpus and establish a benchmark specifically tailored for radio scenario speaker verification studies. Experimental results demonstrate that our proposed methodology effectively enhances performance and mitigates degradation caused by radio transmission in speaker verification tasks. The code will be available on Github.
Related papers
- Training-Free Deepfake Voice Recognition by Leveraging Large-Scale Pre-Trained Models [52.04189118767758]
Generalization is a main issue for current audio deepfake detectors.
In this paper we study the potential of large-scale pre-trained models for audio deepfake detection.
arXiv Detail & Related papers (2024-05-03T15:27:11Z) - Unsupervised Speaker Diarization in Distributed IoT Networks Using Federated Learning [2.3076690318595676]
This paper presents a computationally efficient and distributed speaker diarization framework for networked IoT-style audio devices.
A Federated Learning model can identify the participants in a conversation without the requirement of a large audio database for training.
An unsupervised online update mechanism is proposed for the Federated Learning model which depends on cosine similarity of speaker embeddings.
arXiv Detail & Related papers (2024-04-16T18:40:28Z) - Utilizing Machine Learning for Signal Classification and Noise Reduction
in Amateur Radio [0.0]
In the realm of amateur radio, the effective classification of signals and the mitigation of noise play crucial roles in ensuring reliable communication.
Traditional methods for signal classification and noise reduction often rely on manual intervention and predefined thresholds.
We explore the application of machine learning techniques for signal classification and noise reduction in amateur radio operations.
arXiv Detail & Related papers (2024-02-15T18:49:05Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
We reformulate the SED problem by taking a generative learning perspective.
Specifically, we aim to generate sound temporal boundaries from noisy proposals in a denoising diffusion process.
During training, our model learns to reverse the noising process by converting noisy latent queries to the groundtruth versions.
arXiv Detail & Related papers (2023-08-14T17:29:41Z) - Do You Remember? Overcoming Catastrophic Forgetting for Fake Audio
Detection [54.20974251478516]
We propose a continual learning algorithm for fake audio detection to overcome catastrophic forgetting.
When fine-tuning a detection network, our approach adaptively computes the direction of weight modification according to the ratio of genuine utterances and fake utterances.
Our method can easily be generalized to related fields, like speech emotion recognition.
arXiv Detail & Related papers (2023-08-07T05:05:49Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
Noise robustness is essential for deploying automatic speech recognition systems in real-world environments.
We employ a noise-robust representation learned by a refined self-supervised framework for noisy speech recognition.
We achieve comparable performance to the best supervised approach reported with only 16% of labeled data.
arXiv Detail & Related papers (2021-10-28T20:39:02Z) - PL-EESR: Perceptual Loss Based END-TO-END Robust Speaker Representation
Extraction [90.55375210094995]
Speech enhancement aims to improve the perceptual quality of the speech signal by suppression of the background noise.
We propose an end-to-end deep learning framework, dubbed PL-EESR, for robust speaker representation extraction.
arXiv Detail & Related papers (2021-10-03T07:05:29Z) - Deep Speaker Embeddings for Far-Field Speaker Recognition on Short
Utterances [53.063441357826484]
Speaker recognition systems based on deep speaker embeddings have achieved significant performance in controlled conditions.
Speaker verification on short utterances in uncontrolled noisy environment conditions is one of the most challenging and highly demanded tasks.
This paper presents approaches aimed to achieve two goals: a) improve the quality of far-field speaker verification systems in the presence of environmental noise, reverberation and b) reduce the system qualitydegradation for short utterances.
arXiv Detail & Related papers (2020-02-14T13:34:33Z) - Robust Speaker Recognition Using Speech Enhancement And Attention Model [37.33388614967888]
Instead of individually processing speech enhancement and speaker recognition, the two modules are integrated into one framework by a joint optimisation using deep neural networks.
To increase robustness against noise, a multi-stage attention mechanism is employed to highlight the speaker related features learned from context information in time and frequency domain.
The obtained results show that the proposed approach using speech enhancement and multi-stage attention models outperforms two strong baselines not using them in most acoustic conditions in our experiments.
arXiv Detail & Related papers (2020-01-14T20:03:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.