ExPLoRA: Parameter-Efficient Extended Pre-Training to Adapt Vision Transformers under Domain Shifts
- URL: http://arxiv.org/abs/2406.10973v1
- Date: Sun, 16 Jun 2024 15:14:56 GMT
- Title: ExPLoRA: Parameter-Efficient Extended Pre-Training to Adapt Vision Transformers under Domain Shifts
- Authors: Samar Khanna, Medhanie Irgau, David B. Lobell, Stefano Ermon,
- Abstract summary: We introduce ExPLoRA, a highly effective technique to improve transfer learning of pre-trained vision transformers (ViTs) under domain shifts.
Our experiments demonstrate state-of-the-art results on satellite imagery, even outperforming fully pre-training and fine-tuning ViTs.
- Score: 52.1635661239108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parameter-efficient fine-tuning (PEFT) techniques such as low-rank adaptation (LoRA) can effectively adapt large pre-trained foundation models to downstream tasks using only a small fraction (0.1%-10%) of the original trainable weights. An under-explored question of PEFT is in extending the pre-training phase without supervised labels; that is, can we adapt a pre-trained foundation model to a new domain via efficient self-supervised pre-training on this new domain? In this work, we introduce ExPLoRA, a highly effective technique to improve transfer learning of pre-trained vision transformers (ViTs) under domain shifts. Initializing a ViT with pre-trained weights on large, natural-image datasets such as from DinoV2 or MAE, ExPLoRA continues the unsupervised pre-training objective on a new domain. In this extended pre-training phase, ExPLoRA only unfreezes 1-2 pre-trained ViT blocks and all normalization layers, and then tunes all other layers with LoRA. Finally, we fine-tune the resulting model only with LoRA on this new domain for supervised learning. Our experiments demonstrate state-of-the-art results on satellite imagery, even outperforming fully pre-training and fine-tuning ViTs. Using the DinoV2 training objective, we demonstrate up to 7% improvement in linear probing top-1 accuracy on downstream tasks while using <10% of the number of parameters that are used in prior fully-tuned state-of-the art approaches. Our ablation studies confirm the efficacy of our approach over other baselines, including PEFT and simply unfreezing more transformer blocks.
Related papers
- Parameter Efficient Fine-tuning of Self-supervised ViTs without Catastrophic Forgetting [0.5249805590164901]
Post-pre-training and fine-tuning on new tasks can significantly degrade the model's original general abilities.
Overcoming this stability-plasticity dilemma is crucial for enabling ViTs to continuously learn and adapt to new domains.
Our experiments reveal that using either Block Expansion or LoRA on self-supervised pre-trained ViTs surpass fully fine-tuned ViTs in new domains.
arXiv Detail & Related papers (2024-04-26T08:35:46Z) - An Experimental Study on Exploring Strong Lightweight Vision Transformers via Masked Image Modeling Pre-Training [51.622652121580394]
Masked image modeling (MIM) pre-training for large-scale vision transformers (ViTs) has enabled promising downstream performance on top of the learned self-supervised ViT features.
In this paper, we question if the textitextremely simple lightweight ViTs' fine-tuning performance can also benefit from this pre-training paradigm.
Our pre-training with distillation on pure lightweight ViTs with vanilla/hierarchical design ($5.7M$/$6.5M$) can achieve $79.4%$/$78.9%$ top-1 accuracy on ImageNet-1
arXiv Detail & Related papers (2024-04-18T14:14:44Z) - PVP: Pre-trained Visual Parameter-Efficient Tuning [29.05396521860764]
Large-scale pre-trained transformers have demonstrated remarkable success in various computer vision tasks.
It is still highly challenging to fully fine-tune these models for downstream tasks due to their high computational and storage costs.
We propose a Pre-trained Visual.
efficient (PVP) Tuning framework, which pre-trains the parameter-efficient tuning modules first and then leverages the pre-trained modules.
arXiv Detail & Related papers (2023-04-26T15:55:29Z) - Strong Baselines for Parameter Efficient Few-Shot Fine-tuning [50.83426196335385]
Few-shot classification (FSC) entails learning novel classes given only a few examples per class after a pre-training (or meta-training) phase.
Recent works have shown that simply fine-tuning a pre-trained Vision Transformer (ViT) on new test classes is a strong approach for FSC.
Fine-tuning ViTs, however, is expensive in time, compute and storage.
This has motivated the design of parameter efficient fine-tuning (PEFT) methods which fine-tune only a fraction of the Transformer's parameters.
arXiv Detail & Related papers (2023-04-04T16:14:39Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
We propose self-distillation as a regularization for a further pre-training stage.
We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks.
arXiv Detail & Related papers (2022-09-30T02:25:12Z) - A Closer Look at Self-Supervised Lightweight Vision Transformers [44.44888945683147]
Self-supervised learning on large-scale Vision Transformers (ViTs) as pre-training methods has achieved promising downstream performance.
We benchmark several self-supervised pre-training methods on image classification tasks and some downstream dense prediction tasks.
Even vanilla lightweight ViTs show comparable performance to previous SOTA networks with delicate architecture design.
arXiv Detail & Related papers (2022-05-28T14:14:57Z) - Improving Neural Machine Translation by Denoising Training [95.96569884410137]
We present a simple and effective pretraining strategy Denoising Training DoT for neural machine translation.
We update the model parameters with source- and target-side denoising tasks at the early stage and then tune the model normally.
Experiments show DoT consistently improves the neural machine translation performance across 12 bilingual and 16 multilingual directions.
arXiv Detail & Related papers (2022-01-19T00:11:38Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
Transformer-based supervised pre-training achieves great performance in person re-identification (ReID)
Due to the domain gap between ImageNet and ReID datasets, it usually needs a larger pre-training dataset to boost the performance.
This work aims to mitigate the gap between the pre-training and ReID datasets from the perspective of data and model structure.
arXiv Detail & Related papers (2021-11-23T18:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.