DP-MemArc: Differential Privacy Transfer Learning for Memory Efficient Language Models
- URL: http://arxiv.org/abs/2406.11087v3
- Date: Thu, 15 Aug 2024 22:57:08 GMT
- Title: DP-MemArc: Differential Privacy Transfer Learning for Memory Efficient Language Models
- Authors: Yanming Liu, Xinyue Peng, Yuwei Zhang, Xiaolan Ke, Songhang Deng, Jiannan Cao, Chen Ma, Mengchen Fu, Xuhong Zhang, Sheng Cheng, Xun Wang, Jianwei Yin, Tianyu Du,
- Abstract summary: We introduce DP-MemArc, a novel training framework aimed at reducing the memory costs of large language models.
DP-MemArc incorporates side network or reversible network designs to support a variety of differential privacy memory-efficient fine-tuning schemes.
- Score: 29.147695134795146
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models have repeatedly shown outstanding performance across diverse applications. However, deploying these models can inadvertently risk user privacy. The significant memory demands during training pose a major challenge in terms of resource consumption. This substantial size places a heavy load on memory resources, raising considerable practical concerns. In this paper, we introduce DP-MemArc, a novel training framework aimed at reducing the memory costs of large language models while emphasizing the protection of user data privacy. DP-MemArc incorporates side network or reversible network designs to support a variety of differential privacy memory-efficient fine-tuning schemes. Our approach not only achieves in memory optimization but also ensures robust privacy protection, keeping user data secure and confidential. Extensive experiments have demonstrated that DP-MemArc effectively provides differential privacy-efficient fine-tuning across different task scenarios.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - SoK: Reducing the Vulnerability of Fine-tuned Language Models to
Membership Inference Attacks [1.03590082373586]
We provide the first systematic review of the vulnerability of large language models to membership inference attacks.
We find that some training methods provide significantly reduced privacy risk, with the combination of differential privacy and low-rank adaptors achieving the best privacy protection against these attacks.
arXiv Detail & Related papers (2024-03-13T12:46:51Z) - Private Fine-tuning of Large Language Models with Zeroth-order Optimization [51.19403058739522]
Differentially private gradient descent (DP-SGD) allows models to be trained in a privacy-preserving manner.
We introduce DP-ZO, a private fine-tuning framework for large language models by privatizing zeroth order optimization methods.
arXiv Detail & Related papers (2024-01-09T03:53:59Z) - DPZero: Private Fine-Tuning of Language Models without Backpropagation [49.365749361283704]
We introduce DPZero, a novel private zeroth-order algorithm with nearly dimension-independent rates.
The memory efficiency of DPZero is demonstrated in privately fine-tuning RoBERTa and OPT on several downstream tasks.
arXiv Detail & Related papers (2023-10-14T18:42:56Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z) - ESMFL: Efficient and Secure Models for Federated Learning [28.953644581089495]
We propose a privacy-preserving method for the federated learning distributed system, operated on Intel Software Guard Extensions.
We reduce the commutation cost by sparsification and it can achieve reasonable accuracy with different model architectures.
arXiv Detail & Related papers (2020-09-03T18:27:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.