Are Large Language Models a Good Replacement of Taxonomies?
- URL: http://arxiv.org/abs/2406.11131v2
- Date: Thu, 20 Jun 2024 08:01:14 GMT
- Title: Are Large Language Models a Good Replacement of Taxonomies?
- Authors: Yushi Sun, Hao Xin, Kai Sun, Yifan Ethan Xu, Xiao Yang, Xin Luna Dong, Nan Tang, Lei Chen,
- Abstract summary: Large language models (LLMs) demonstrate an impressive ability to internalize knowledge and answer natural language questions.
We ask if the schema of knowledge graph (i.e., taxonomy) is made obsolete by LLMs.
- Score: 25.963448807848746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) demonstrate an impressive ability to internalize knowledge and answer natural language questions. Although previous studies validate that LLMs perform well on general knowledge while presenting poor performance on long-tail nuanced knowledge, the community is still doubtful about whether the traditional knowledge graphs should be replaced by LLMs. In this paper, we ask if the schema of knowledge graph (i.e., taxonomy) is made obsolete by LLMs. Intuitively, LLMs should perform well on common taxonomies and at taxonomy levels that are common to people. Unfortunately, there lacks a comprehensive benchmark that evaluates the LLMs over a wide range of taxonomies from common to specialized domains and at levels from root to leaf so that we can draw a confident conclusion. To narrow the research gap, we constructed a novel taxonomy hierarchical structure discovery benchmark named TaxoGlimpse to evaluate the performance of LLMs over taxonomies. TaxoGlimpse covers ten representative taxonomies from common to specialized domains with in-depth experiments of different levels of entities in this taxonomy from root to leaf. Our comprehensive experiments of eighteen state-of-the-art LLMs under three prompting settings validate that LLMs can still not well capture the knowledge of specialized taxonomies and leaf-level entities.
Related papers
- Do LLMs Really Adapt to Domains? An Ontology Learning Perspective [2.0755366440393743]
Large Language Models (LLMs) have demonstrated unprecedented prowess across various natural language processing tasks in various application domains.
Recent studies show that LLMs can be leveraged to perform lexical semantic tasks, such as Knowledge Base Completion (KBC) or Ontology Learning (OL)
This paper investigates the question: Do LLMs really adapt to domains and remain consistent in the extraction of structured knowledge, or do they only learn lexical senses instead of reasoning?
arXiv Detail & Related papers (2024-07-29T13:29:43Z) - Large Language Models as Reliable Knowledge Bases? [60.25969380388974]
Large Language Models (LLMs) can be viewed as potential knowledge bases (KBs)
This study defines criteria that a reliable LLM-as-KB should meet, focusing on factuality and consistency.
strategies like ICL and fine-tuning are unsuccessful at making LLMs better KBs.
arXiv Detail & Related papers (2024-07-18T15:20:18Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
Large Language Models (LLMs) are effective in performing various NLP tasks, but struggle to handle tasks that require extensive, real-world knowledge.
We propose a benchmark that requires knowledge of long-tail facts for answering the involved questions.
Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required.
arXiv Detail & Related papers (2024-05-10T15:10:20Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - FLAME: Self-Supervised Low-Resource Taxonomy Expansion using Large
Language Models [19.863010475923414]
Taxonomies find utility in various real-world applications, such as e-commerce search engines and recommendation systems.
Traditional supervised taxonomy expansion approaches encounter difficulties stemming from limited resources.
We propose FLAME, a novel approach for taxonomy expansion in low-resource environments by harnessing the capabilities of large language models.
arXiv Detail & Related papers (2024-02-21T08:50:40Z) - Understanding Survey Paper Taxonomy about Large Language Models via
Graph Representation Learning [2.88268082568407]
We develop a method to automatically assign survey papers to a taxonomy.
Our work indicates that leveraging graph structure information on co-category graphs can significantly outperform the language models.
arXiv Detail & Related papers (2024-02-16T02:21:59Z) - Pushing The Limit of LLM Capacity for Text Classification [27.684335455517417]
We propose RGPT, an adaptive boosting framework tailored to produce a specialized text classification LLM.
We show that RGPT significantly outperforms 8 SOTA PLMs and 7 SOTA LLMs on four benchmarks by 1.36% on average.
arXiv Detail & Related papers (2024-02-12T08:14:03Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
Large language model (LLM) has achieved outstanding performance on various downstream tasks with its powerful natural language understanding and zero-shot capability, but LLM still suffers from knowledge limitation.
We propose a novel framework KnowledgeNavigator to address these challenges by efficiently and accurately retrieving external knowledge from knowledge graph.
We evaluate KnowledgeNavigator on multiple public KGQA benchmarks, the experiments show the framework has great effectiveness and generalization.
arXiv Detail & Related papers (2023-12-26T04:22:56Z) - Enabling Large Language Models to Learn from Rules [99.16680531261987]
We are inspired that humans can learn the new tasks or knowledge in another way by learning from rules.
We propose rule distillation, which first uses the strong in-context abilities of LLMs to extract the knowledge from the textual rules.
Our experiments show that making LLMs learn from rules by our method is much more efficient than example-based learning in both the sample size and generalization ability.
arXiv Detail & Related papers (2023-11-15T11:42:41Z) - KoLA: Carefully Benchmarking World Knowledge of Large Language Models [87.96683299084788]
We construct a Knowledge-oriented LLM Assessment benchmark (KoLA)
We mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering $19$ tasks.
We use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, to evaluate the capacity to handle unseen data and evolving knowledge.
arXiv Detail & Related papers (2023-06-15T17:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.