Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework
- URL: http://arxiv.org/abs/2406.11159v1
- Date: Mon, 17 Jun 2024 02:56:55 GMT
- Title: Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework
- Authors: Siyuan Yu, Wei Chen, H. Vincent Poor,
- Abstract summary: Distributed gradient descent (SGD) has attracted considerable recent attention due to its potential for scaling computational resources, reducing training time, and helping protect user privacy in machine learning.
This paper presents the run time and staleness of distributed SGD based on delay differential equations (SDDEs) and the approximation of gradient arrivals.
It is interestingly shown that increasing the number of activated workers does not necessarily accelerate distributed SGD due to staleness.
- Score: 56.82432591933544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed stochastic gradient descent (SGD) has attracted considerable recent attention due to its potential for scaling computational resources, reducing training time, and helping protect user privacy in machine learning. However, the staggers and limited bandwidth may induce random computational/communication delays, thereby severely hindering the learning process. Therefore, how to accelerate asynchronous SGD by efficiently scheduling multiple workers is an important issue. In this paper, a unified framework is presented to analyze and optimize the convergence of asynchronous SGD based on stochastic delay differential equations (SDDEs) and the Poisson approximation of aggregated gradient arrivals. In particular, we present the run time and staleness of distributed SGD without a memorylessness assumption on the computation times. Given the learning rate, we reveal the relevant SDDE's damping coefficient and its delay statistics, as functions of the number of activated clients, staleness threshold, the eigenvalues of the Hessian matrix of the objective function, and the overall computational/communication delay. The formulated SDDE allows us to present both the distributed SGD's convergence condition and speed by calculating its characteristic roots, thereby optimizing the scheduling policies for asynchronous/event-triggered SGD. It is interestingly shown that increasing the number of activated workers does not necessarily accelerate distributed SGD due to staleness. Moreover, a small degree of staleness does not necessarily slow down the convergence, while a large degree of staleness will result in the divergence of distributed SGD. Numerical results demonstrate the potential of our SDDE framework, even in complex learning tasks with non-convex objective functions.
Related papers
- MindFlayer: Efficient Asynchronous Parallel SGD in the Presence of Heterogeneous and Random Worker Compute Times [49.1574468325115]
We study the problem of minimizing the expectation of smooth non functions with the help of several parallel workers.
We propose a new asynchronous SGD method, Mindlayer SGD, in which the noise is heavy tailed.
Our theory empirical results demonstrate the superiority of Mindlayer SGD in cases when the noise is heavy tailed.
arXiv Detail & Related papers (2024-10-05T21:11:32Z) - DASA: Delay-Adaptive Multi-Agent Stochastic Approximation [64.32538247395627]
We consider a setting in which $N$ agents aim to speedup a common Approximation problem by acting in parallel and communicating with a central server.
To mitigate the effect of delays and stragglers, we propose textttDASA, a Delay-Adaptive algorithm for multi-agent Approximation.
arXiv Detail & Related papers (2024-03-25T22:49:56Z) - Towards Understanding the Generalizability of Delayed Stochastic
Gradient Descent [63.43247232708004]
A gradient descent performed in an asynchronous manner plays a crucial role in training large-scale machine learning models.
Existing generalization error bounds are rather pessimistic and cannot reveal the correlation between asynchronous delays and generalization.
Our theoretical results indicate that asynchronous delays reduce the generalization error of the delayed SGD algorithm.
arXiv Detail & Related papers (2023-08-18T10:00:27Z) - Scaling up Stochastic Gradient Descent for Non-convex Optimisation [5.908471365011942]
We propose a novel approach to the problem of shared parallel computation.
By combining two strategies into a unified framework, DPSGD is a better trade computation framework.
The potential gains can be achieved by DPSGD on a deep learning (DRL) problem (Latent Diletrichal inference) and on a deep learning (DRL) problem (advantage actor - A2C)
arXiv Detail & Related papers (2022-10-06T13:06:08Z) - Distributed stochastic optimization with large delays [59.95552973784946]
One of the most widely used methods for solving large-scale optimization problems is distributed asynchronous gradient descent (DASGD)
We show that DASGD converges to a global optimal implementation model under same delay assumptions.
arXiv Detail & Related papers (2021-07-06T21:59:49Z) - Guided parallelized stochastic gradient descent for delay compensation [0.0]
gradient descent (SGD) algorithm and its variations have been effectively used to optimize neural network models.
With the rapid growth of big data and deep learning, SGD is no longer the most suitable choice due to its natural behavior of sequential optimization of the error function.
This has led to the development of parallel SGD algorithms, such as asynchronous SGD (ASGD) and synchronous SGD (SSGD) to train deep neural networks.
arXiv Detail & Related papers (2021-01-17T23:12:40Z) - On Learning Rates and Schr\"odinger Operators [105.32118775014015]
We present a general theoretical analysis of the effect of the learning rate.
We find that the learning rate tends to zero for a broad non- neural class functions.
arXiv Detail & Related papers (2020-04-15T09:52:37Z) - Slow and Stale Gradients Can Win the Race [39.750046808758526]
Distributed Gradient Descent (SGD) when run in a synchronous manner, suffers from delays in runtime as it waits for the slowest workers (stragglers)
Asynchronous methods can alleviate stragglers, but cause gradient staleness that can adversely affect the convergence error.
We present a novel theoretical characterization of the speedup offered by asynchronous methods by analyzing the trade-off between the error in the trained model and the actual training runtime.
arXiv Detail & Related papers (2020-03-23T23:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.