Vid3D: Synthesis of Dynamic 3D Scenes using 2D Video Diffusion
- URL: http://arxiv.org/abs/2406.11196v3
- Date: Wed, 31 Jul 2024 02:03:04 GMT
- Title: Vid3D: Synthesis of Dynamic 3D Scenes using 2D Video Diffusion
- Authors: Rishab Parthasarathy, Zachary Ankner, Aaron Gokaslan,
- Abstract summary: We investigate whether it is necessary to explicitly enforce multiview consistency over time, as current approaches do, or if it is sufficient for a model to generate 3D representations of each timestep independently.
We propose a model, Vid3D, that leverages 2D video diffusion to generate 3D videos by first generating a 2D "seed" of the video's temporal dynamics and then independently generating a 3D representation for each timestep in the seed video.
- Score: 3.545941891218148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A recent frontier in computer vision has been the task of 3D video generation, which consists of generating a time-varying 3D representation of a scene. To generate dynamic 3D scenes, current methods explicitly model 3D temporal dynamics by jointly optimizing for consistency across both time and views of the scene. In this paper, we instead investigate whether it is necessary to explicitly enforce multiview consistency over time, as current approaches do, or if it is sufficient for a model to generate 3D representations of each timestep independently. We hence propose a model, Vid3D, that leverages 2D video diffusion to generate 3D videos by first generating a 2D "seed" of the video's temporal dynamics and then independently generating a 3D representation for each timestep in the seed video. We evaluate Vid3D against two state-of-the-art 3D video generation methods and find that Vid3D is achieves comparable results despite not explicitly modeling 3D temporal dynamics. We further ablate how the quality of Vid3D depends on the number of views generated per frame. While we observe some degradation with fewer views, performance degradation remains minor. Our results thus suggest that 3D temporal knowledge may not be necessary to generate high-quality dynamic 3D scenes, potentially enabling simpler generative algorithms for this task.
Related papers
- CAT3D: Create Anything in 3D with Multi-View Diffusion Models [87.80820708758317]
We present CAT3D, a method for creating anything in 3D by simulating this real-world capture process with a multi-view diffusion model.
CAT3D can create entire 3D scenes in as little as one minute, and outperforms existing methods for single image and few-view 3D scene creation.
arXiv Detail & Related papers (2024-05-16T17:59:05Z) - OneTo3D: One Image to Re-editable Dynamic 3D Model and Video Generation [0.0]
One image to editable dynamic 3D model and video generation is novel direction and change in the research area of single image to 3D representation or 3D reconstruction of image.
We propose the OneTo3D, a method and theory to used one single image to generate the editable 3D model and generate the targeted semantic continuous time-unlimited 3D video.
arXiv Detail & Related papers (2024-05-10T15:44:11Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
We propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior to 2D diffusion model and the global 3D information of the current scene.
Our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
arXiv Detail & Related papers (2024-03-14T14:31:22Z) - CC3D: Layout-Conditioned Generation of Compositional 3D Scenes [49.281006972028194]
We introduce CC3D, a conditional generative model that synthesizes complex 3D scenes conditioned on 2D semantic scene layouts.
Our evaluations on synthetic 3D-FRONT and real-world KITTI-360 datasets demonstrate that our model generates scenes of improved visual and geometric quality.
arXiv Detail & Related papers (2023-03-21T17:59:02Z) - PV3D: A 3D Generative Model for Portrait Video Generation [94.96025739097922]
We propose PV3D, the first generative framework that can synthesize multi-view consistent portrait videos.
PV3D is able to support many downstream applications such as animating static portraits and view-consistent video motion editing.
arXiv Detail & Related papers (2022-12-13T05:42:44Z) - 3inGAN: Learning a 3D Generative Model from Images of a Self-similar
Scene [34.2144933185175]
3inGAN is an unconditional 3D generative model trained from 2D images of a single self-similar 3D scene.
We show results on semi-stochastic scenes of varying scale and complexity, obtained from real and synthetic sources.
arXiv Detail & Related papers (2022-11-27T18:03:21Z) - RenderDiffusion: Image Diffusion for 3D Reconstruction, Inpainting and
Generation [68.06991943974195]
We present RenderDiffusion, the first diffusion model for 3D generation and inference, trained using only monocular 2D supervision.
We evaluate RenderDiffusion on FFHQ, AFHQ, ShapeNet and CLEVR datasets, showing competitive performance for generation of 3D scenes and inference of 3D scenes from 2D images.
arXiv Detail & Related papers (2022-11-17T20:17:04Z) - 3D-Aware Video Generation [149.5230191060692]
We explore 4D generative adversarial networks (GANs) that learn generation of 3D-aware videos.
By combining neural implicit representations with time-aware discriminator, we develop a GAN framework that synthesizes 3D video supervised only with monocular videos.
arXiv Detail & Related papers (2022-06-29T17:56:03Z) - Unsupervised object-centric video generation and decomposition in 3D [36.08064849807464]
We propose to model a video as the view seen while moving through a scene with multiple 3D objects and a 3D background.
Our model is trained from monocular videos without any supervision, yet learns to generate coherent 3D scenes containing several moving objects.
arXiv Detail & Related papers (2020-07-07T18:01:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.