ClawMachine: Fetching Visual Tokens as An Entity for Referring and Grounding
- URL: http://arxiv.org/abs/2406.11327v1
- Date: Mon, 17 Jun 2024 08:39:16 GMT
- Title: ClawMachine: Fetching Visual Tokens as An Entity for Referring and Grounding
- Authors: Tianren Ma, Lingxi Xie, Yunjie Tian, Boyu Yang, Yuan Zhang, David Doermann, Qixiang Ye,
- Abstract summary: Existing methods, including proxy encoding and geometry encoding, incorporate additional syntax to encode the object's location.
This study presents ClawMachine, offering a new methodology that notates an entity directly using the visual tokens.
ClawMachine unifies visual referring and grounding into an auto-regressive format and learns with a decoder-only architecture.
- Score: 67.63933036920012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An essential topic for multimodal large language models (MLLMs) is aligning vision and language concepts at a finer level. In particular, we devote efforts to encoding visual referential information for tasks such as referring and grounding. Existing methods, including proxy encoding and geometry encoding, incorporate additional syntax to encode the object's location, bringing extra burdens in training MLLMs to communicate between language and vision. This study presents ClawMachine, offering a new methodology that notates an entity directly using the visual tokens. It allows us to unify the prompt and answer of visual referential tasks without additional syntax. Upon a joint vision-language vocabulary, ClawMachine unifies visual referring and grounding into an auto-regressive format and learns with a decoder-only architecture. Experiments validate that our model achieves competitive performance across visual referring and grounding tasks with a reduced demand for training data. Additionally, ClawMachine demonstrates a native ability to integrate multi-source information for complex visual reasoning, which prior MLLMs can hardly perform without specific adaptions.
Related papers
- Croc: Pretraining Large Multimodal Models with Cross-Modal Comprehension [21.500920290909843]
We propose a new pretraining paradigm for Large Language Models (LLMs) to enhance their visual comprehension capabilities.
Specifically, we design a dynamically learnable prompt token pool and employ the Hungarian algorithm to replace part of the original visual tokens with the most relevant prompt tokens.
We present a new foundation model called Croc, which achieves new state-of-the-art performance on massive vision-language benchmarks.
arXiv Detail & Related papers (2024-10-18T09:44:25Z) - Learning to Ground VLMs without Forgetting [54.033346088090674]
We introduce LynX, a framework that equips pretrained Visual Language Models with visual grounding ability without forgetting their existing image and language understanding skills.
To train the model effectively, we generate a high-quality synthetic dataset we call SCouT, which mimics human reasoning in visual grounding.
We evaluate LynX on several object detection and visual grounding datasets, demonstrating strong performance in object detection, zero-shot localization and grounded reasoning.
arXiv Detail & Related papers (2024-10-14T13:35:47Z) - Towards Interpreting Visual Information Processing in Vision-Language Models [24.51408101801313]
Vision-Language Models (VLMs) are powerful tools for processing and understanding text and images.
We study the processing of visual tokens in the language model component of LLaVA, a prominent VLM.
arXiv Detail & Related papers (2024-10-09T17:55:02Z) - Visual Prompting in Multimodal Large Language Models: A Survey [95.75225825537528]
Multimodal large language models (MLLMs) equip pre-trained large-language models (LLMs) with visual capabilities.
Visual prompting has emerged for more fine-grained and free-form visual instructions.
This paper focuses on visual prompting, prompt generation, compositional reasoning, and prompt learning.
arXiv Detail & Related papers (2024-09-05T08:47:34Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
We propose a training-free method to inject visual referring into Multimodal Large Language Models (MLLMs)
We observe the relationship between text prompt tokens and visual tokens in MLLMs, where attention layers model the connection between them.
We optimize a learnable visual token based on an energy function, enhancing the strength of referential regions in the attention map.
arXiv Detail & Related papers (2024-07-31T11:40:29Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization [52.935150075484074]
We introduce a well-designed visual tokenizer to translate the non-linguistic image into a sequence of discrete tokens like a foreign language.
The resulting visual tokens encompass high-level semantics worthy of a word and also support dynamic sequence length varying from the image.
This unification empowers LaVIT to serve as an impressive generalist interface to understand and generate multi-modal content simultaneously.
arXiv Detail & Related papers (2023-09-09T03:01:38Z) - Learning Visual Representations with Caption Annotations [19.24013129952071]
We propose a proxy task to learn visual representations over image-caption pairs.
ICMLM consists in predicting masked words in captions by relying on visual cues.
Our experiments confirm that image captions can be leveraged to inject global and localized semantic information into visual representations.
arXiv Detail & Related papers (2020-08-04T08:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.