OGNI-DC: Robust Depth Completion with Optimization-Guided Neural Iterations
- URL: http://arxiv.org/abs/2406.11711v1
- Date: Mon, 17 Jun 2024 16:30:29 GMT
- Title: OGNI-DC: Robust Depth Completion with Optimization-Guided Neural Iterations
- Authors: Yiming Zuo, Jia Deng,
- Abstract summary: "Optimization-Guided Neural Iterations" (OGNI) is a novel framework for depth completion.
OGNI-DC exhibits strong generalization, outperforming baselines on unseen datasets and across various sparsity levels.
It has high accuracy, achieving state-of-the-art performance on the NYUv2 and the KITTI benchmarks.
- Score: 23.0962036039182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth completion is the task of generating a dense depth map given an image and a sparse depth map as inputs. It has important applications in various downstream tasks. In this paper, we present OGNI-DC, a novel framework for depth completion. The key to our method is "Optimization-Guided Neural Iterations" (OGNI). It consists of a recurrent unit that refines a depth gradient field and a differentiable depth integrator that integrates the depth gradients into a depth map. OGNI-DC exhibits strong generalization, outperforming baselines by a large margin on unseen datasets and across various sparsity levels. Moreover, OGNI-DC has high accuracy, achieving state-of-the-art performance on the NYUv2 and the KITTI benchmarks. Code is available at https://github.com/princeton-vl/OGNI-DC.
Related papers
- DepthSplat: Connecting Gaussian Splatting and Depth [90.06180236292866]
In this paper, we present DepthSplat to connect Gaussian splatting and depth estimation.
We first contribute a robust multi-view depth model by leveraging pre-trained monocular depth features.
We also show that Gaussian splatting can serve as an unsupervised pre-training objective.
arXiv Detail & Related papers (2024-10-17T17:59:58Z) - HybridDepth: Robust Metric Depth Fusion by Leveraging Depth from Focus and Single-Image Priors [10.88048563201236]
We propose HYBRIDDEPTH, a robust depth estimation pipeline that addresses key challenges in depth estimation.
We test our pipeline as an end-to-end system, with a newly developed mobile client to capture focal stacks, which are then sent to a GPU-powered server for depth estimation.
Comprehensive quantitative and qualitative analyses demonstrate that HYBRIDDEPTH outperforms state-of-the-art(SOTA) models on common datasets.
arXiv Detail & Related papers (2024-07-26T00:51:52Z) - LRRU: Long-short Range Recurrent Updating Networks for Depth Completion [45.48580252300282]
Long-short Range Recurrent Updating (LRRU) network is proposed to accomplish depth completion more efficiently.
LRRU first roughly fills the sparse input to obtain an initial dense depth map, and then iteratively updates it through learned spatially-variant kernels.
Our initial depth map has coarse but complete scene depth information, which helps relieve the burden of directly regressing the dense depth from sparse ones.
arXiv Detail & Related papers (2023-10-13T09:04:52Z) - Revisiting Deformable Convolution for Depth Completion [40.45231083385708]
Depth completion aims to generate high-quality dense depth maps from sparse depth maps.
Previous work usually employs RGB images as guidance, and introduces iterative spatial propagation to refine estimated coarse depth maps.
We propose an effective architecture that leverages deformable kernel convolution as a single-pass refinement module.
arXiv Detail & Related papers (2023-08-03T17:59:06Z) - BridgeNet: A Joint Learning Network of Depth Map Super-Resolution and
Monocular Depth Estimation [60.34562823470874]
We propose a joint learning network of depth map super-resolution (DSR) and monocular depth estimation (MDE) without introducing additional supervision labels.
One is the high-frequency attention bridge (HABdg) designed for the feature encoding process, which learns the high-frequency information of the MDE task to guide the DSR task.
The other is the content guidance bridge (CGBdg) designed for the depth map reconstruction process, which provides the content guidance learned from DSR task for MDE task.
arXiv Detail & Related papers (2021-07-27T01:28:23Z) - Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark
Dataset and Baseline [48.69396457721544]
We build a large-scale dataset named "RGB-D-D" to promote the study of depth map super-resolution (SR)
We provide a fast depth map super-resolution (FDSR) baseline, in which the high-frequency component adaptively decomposed from RGB image to guide the depth map SR.
For the real-world LR depth maps, our algorithm can produce more accurate HR depth maps with clearer boundaries and to some extent correct the depth value errors.
arXiv Detail & Related papers (2021-04-13T13:27:26Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - Densely Nested Top-Down Flows for Salient Object Detection [137.74130900326833]
This paper revisits the role of top-down modeling in salient object detection.
It designs a novel densely nested top-down flows (DNTDF)-based framework.
In every stage of DNTDF, features from higher levels are read in via the progressive compression shortcut paths (PCSP)
arXiv Detail & Related papers (2021-02-18T03:14:02Z) - FCFR-Net: Feature Fusion based Coarse-to-Fine Residual Learning for
Monocular Depth Completion [15.01291779855834]
Recent approaches mainly formulate the depth completion as a one-stage end-to-end learning task.
We propose a novel end-to-end residual learning framework, which formulates the depth completion as a two-stage learning task.
arXiv Detail & Related papers (2020-12-15T13:09:56Z) - Efficient Depth Completion Using Learned Bases [94.0808155168311]
We propose a new global geometry constraint for depth completion.
By assuming depth maps often lay on low dimensional subspaces, a dense depth map can be approximated by a weighted sum of full-resolution principal depth bases.
arXiv Detail & Related papers (2020-12-02T11:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.