Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models
- URL: http://arxiv.org/abs/2406.11736v1
- Date: Mon, 17 Jun 2024 16:52:56 GMT
- Title: Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models
- Authors: Fangzhi Xu, Qiushi Sun, Kanzhi Cheng, Jun Liu, Yu Qiao, Zhiyong Wu,
- Abstract summary: We propose an environment-guided neural-symbolic self-training framework named ENVISIONS.
It aims to overcome two main challenges: (1) the scarcity of symbolic data, and (2) the limited proficiency of LLMs in processing symbolic language.
- Score: 31.210790277136443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the primary driving forces contributing to the superior performance of Large Language Models (LLMs) is the extensive availability of human-annotated natural language data, which is used for alignment fine-tuning. This inspired researchers to investigate self-training methods to mitigate the extensive reliance on human annotations. However, the current success of self-training has been primarily observed in natural language scenarios, rather than in the increasingly important neural-symbolic scenarios. To this end, we propose an environment-guided neural-symbolic self-training framework named ENVISIONS. It aims to overcome two main challenges: (1) the scarcity of symbolic data, and (2) the limited proficiency of LLMs in processing symbolic language. Extensive evaluations conducted on three distinct domains demonstrate the effectiveness of our approach. Additionally, we have conducted a comprehensive analysis to uncover the factors contributing to ENVISIONS's success, thereby offering valuable insights for future research in this area. Code will be available at \url{https://github.com/xufangzhi/ENVISIONS}.
Related papers
- HiLa: Hierarchical Vision-Language Collaboration for Cancer Survival Prediction [55.00788339683146]
We propose a novel Hierarchical vision-Language collaboration framework for improved survival prediction.<n> Specifically, HiLa employs pretrained feature extractors to generate hierarchical visual features from WSIs at both patch and region levels.<n>This ap-proach enables the comprehensive learning of discriminative visual features cor-responding to different survival-related attributes from prompts.
arXiv Detail & Related papers (2025-07-07T02:06:25Z) - Analyzing (In)Abilities of SAEs via Formal Languages [14.71170261508271]
We train sparse autoencoders on a synthetic testbed of formal languages.
We find performance is sensitive to inductive biases of the training pipeline.
We argue that causality has to become a central target in SAE training.
arXiv Detail & Related papers (2024-10-15T16:42:13Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$ is a framework designed for the pre-training of visually conditioned language generation models.
We show that our approach accelerates the training of vision-language models by a factor of 5 without a noticeable impact on overall performance.
arXiv Detail & Related papers (2023-10-05T03:40:06Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Large Language Models Are Not Strong Abstract Reasoners [12.354660792999269]
Large Language Models have shown tremendous performance on a variety of natural language processing tasks.
It is unclear whether LLMs can achieve human-like cognitive capabilities or whether these models are still fundamentally circumscribed.
We introduce a new benchmark for evaluating language models beyond memorization on abstract reasoning tasks.
arXiv Detail & Related papers (2023-05-31T04:50:29Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - On Robustness of Prompt-based Semantic Parsing with Large Pre-trained
Language Model: An Empirical Study on Codex [48.588772371355816]
This paper presents the first empirical study on the adversarial robustness of a large prompt-based language model of code, codex.
Our results demonstrate that the state-of-the-art (SOTA) code-language models are vulnerable to carefully crafted adversarial examples.
arXiv Detail & Related papers (2023-01-30T13:21:00Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
We propose a novel latent-variable formulation for constructing intrinsic probes.
We find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
arXiv Detail & Related papers (2022-01-20T15:01:12Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - Improving Context Modeling in Neural Topic Segmentation [18.92944038749279]
We enhance a segmenter based on a hierarchical attention BiLSTM network to better model context.
Our optimized segmenter outperforms SOTA approaches when trained and tested on three datasets.
arXiv Detail & Related papers (2020-10-07T03:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.