CELL your Model: Contrastive Explanations for Large Language Models
- URL: http://arxiv.org/abs/2406.11785v3
- Date: Mon, 17 Feb 2025 18:37:13 GMT
- Title: CELL your Model: Contrastive Explanations for Large Language Models
- Authors: Ronny Luss, Erik Miehling, Amit Dhurandhar,
- Abstract summary: We propose a contrastive explanation method requiring black-box/query access.<n>We show the efficacy of our method on important natural language tasks such as open-text generation.
- Score: 15.127559387747521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of black-box deep neural network classification models has sparked the need to explain their decisions. However, in the case of generative AI, such as large language models (LLMs), there is no class prediction to explain. Rather, one can ask why an LLM output a particular response to a given prompt. In this paper, we answer this question by proposing a contrastive explanation method requiring simply black-box/query access. Our explanations suggest that an LLM outputs a reply to a given prompt because if the prompt was slightly modified, the LLM would have given a different response that is either less preferable or contradicts the original response. The key insight is that contrastive explanations simply require a scoring function that has meaning to the user and not necessarily a specific real valued quantity (viz. class label). To this end, we offer a novel budgeted algorithm, our main algorithmic contribution, which intelligently creates contrasts based on such a scoring function while adhering to a query budget, necessary for longer contexts. We show the efficacy of our method on important natural language tasks such as open-text generation and chatbot conversations.
Related papers
- Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
Large language models (LLMs) have rapidly improved text embeddings for a growing array of natural-language processing tasks.
We introduce question-answering embeddings (QA-Emb), embeddings where each feature represents an answer to a yes/no question asked to an LLM.
We use QA-Emb to flexibly generate interpretable models for predicting fMRI voxel responses to language stimuli.
arXiv Detail & Related papers (2024-05-26T22:30:29Z) - Can Small Language Models Help Large Language Models Reason Better?: LM-Guided Chain-of-Thought [51.240387516059535]
We introduce a novel framework, LM-Guided CoT, that leverages a lightweight (i.e., 1B) language model (LM) for guiding a black-box large (i.e., >10B) LM in reasoning tasks.
We optimize the model through 1) knowledge distillation and 2) reinforcement learning from rationale-oriented and task-oriented reward signals.
arXiv Detail & Related papers (2024-04-04T12:46:37Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
We propose a framework to teach Large Language Models (LLMs) to generate explainable stock predictions.
A reflective agent learns how to explain past stock movements through self-reasoning, while the PPO trainer trains the model to generate the most likely explanations.
Our framework can outperform both traditional deep-learning and LLM methods in prediction accuracy and Matthews correlation coefficient.
arXiv Detail & Related papers (2024-02-06T03:18:58Z) - Customizing Language Model Responses with Contrastive In-Context Learning [7.342346948935483]
We propose an approach that uses contrastive examples to better describe our intent.
This involves providing positive examples that illustrate the true intent, along with negative examples that show what characteristics we want LLMs to avoid.
Before generating an answer, we ask the model to analyze the examples to teach itself what to avoid.
This reasoning step provides the model with the appropriate articulation of the user's need and guides it towards generting a better answer.
arXiv Detail & Related papers (2024-01-30T19:13:12Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-thought (CoT) prompting is a popular in-context learning approach for large language models (LLMs)
This paper introduces a new approach named Latent Reasoning Skills (LaRS) that employs unsupervised learning to create a latent space representation of rationales.
arXiv Detail & Related papers (2023-12-07T20:36:10Z) - XplainLLM: A QA Explanation Dataset for Understanding LLM
Decision-Making [13.928951741632815]
Large Language Models (LLMs) have recently made impressive strides in natural language understanding tasks.
In this paper, we look into bringing some transparency to this process by introducing a new explanation dataset.
Our dataset includes 12,102 question-answer-explanation (QAE) triples.
arXiv Detail & Related papers (2023-11-15T00:34:28Z) - Towards LLM-guided Causal Explainability for Black-box Text Classifiers [16.36602400590088]
We aim to leverage the instruction-following and textual understanding capabilities of recent Large Language Models to facilitate causal explainability.
We propose a three-step pipeline via which, we use an off-the-shelf LLM to identify the latent or unobserved features in the input text.
We experiment with our pipeline on multiple NLP text classification datasets, and present interesting and promising findings.
arXiv Detail & Related papers (2023-09-23T11:22:28Z) - Explanation Selection Using Unlabeled Data for Chain-of-Thought
Prompting [80.9896041501715]
Explanations that have not been "tuned" for a task, such as off-the-shelf explanations written by nonexperts, may lead to mediocre performance.
This paper tackles the problem of how to optimize explanation-infused prompts in a blackbox fashion.
arXiv Detail & Related papers (2023-02-09T18:02:34Z) - Reliable Natural Language Understanding with Large Language Models and
Answer Set Programming [0.0]
Large language models (LLMs) are able to leverage patterns in the text to solve a variety of NLP tasks, but fall short in problems that require reasoning.
We propose STAR, a framework that combines LLMs with Answer Set Programming (ASP)
Goal-directed ASP is then employed to reliably reason over this knowledge.
arXiv Detail & Related papers (2023-02-07T22:37:21Z) - Large Language Models are Better Reasoners with Self-Verification [48.534270563880845]
Large language models (LLMs) have shown strong reasoning ability in several natural language processing tasks.
LLMs with chain of thought (CoT) prompting require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes.
We propose and prove that LLMs also have similar self-verification abilities.
arXiv Detail & Related papers (2022-12-19T15:51:52Z) - APOLLO: A Simple Approach for Adaptive Pretraining of Language Models
for Logical Reasoning [73.3035118224719]
We propose APOLLO, an adaptively pretrained language model that has improved logical reasoning abilities.
APOLLO performs comparably on ReClor and outperforms baselines on LogiQA.
arXiv Detail & Related papers (2022-12-19T07:40:02Z) - NLX-GPT: A Model for Natural Language Explanations in Vision and
Vision-Language Tasks [18.13793282306575]
Natural language explanation (NLE) models aim at explaining the decision-making process of a black box system.
We introduce NLX-GPT, a general, compact and faithful language model that can simultaneously predict an answer and explain it.
We then address the problem of evaluating the explanations which can be in many times generic, data-biased and can come in several forms.
arXiv Detail & Related papers (2022-03-09T22:57:15Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
We propose a methodology to produce contrastive explanations for classification models.
Our method is based on projecting model representation to a latent space.
Our findings shed light on the ability of label-contrastive explanations to provide a more accurate and finer-grained interpretability of a model's decision.
arXiv Detail & Related papers (2021-03-02T00:36:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.