NovoBench: Benchmarking Deep Learning-based De Novo Peptide Sequencing Methods in Proteomics
- URL: http://arxiv.org/abs/2406.11906v2
- Date: Thu, 31 Oct 2024 08:54:52 GMT
- Title: NovoBench: Benchmarking Deep Learning-based De Novo Peptide Sequencing Methods in Proteomics
- Authors: Jingbo Zhou, Shaorong Chen, Jun Xia, Sizhe Liu, Tianze Ling, Wenjie Du, Yue Liu, Jianwei Yin, Stan Z. Li,
- Abstract summary: We present the first unified benchmark NovoBench for emphde novo peptide sequencing.
It comprises diverse mass spectrum data, integrated models, and comprehensive evaluation metrics.
Recent methods, including DeepNovo, PointNovo, Casanovo, InstaNovo, AdaNovo and $pi$-HelixNovo are integrated into our framework.
- Score: 58.03989832372747
- License:
- Abstract: Tandem mass spectrometry has played a pivotal role in advancing proteomics, enabling the high-throughput analysis of protein composition in biological tissues. Many deep learning methods have been developed for \emph{de novo} peptide sequencing task, i.e., predicting the peptide sequence for the observed mass spectrum. However, two key challenges seriously hinder the further advancement of this important task. Firstly, since there is no consensus for the evaluation datasets, the empirical results in different research papers are often not comparable, leading to unfair comparison. Secondly, the current methods are usually limited to amino acid-level or peptide-level precision and recall metrics. In this work, we present the first unified benchmark NovoBench for \emph{de novo} peptide sequencing, which comprises diverse mass spectrum data, integrated models, and comprehensive evaluation metrics. Recent impressive methods, including DeepNovo, PointNovo, Casanovo, InstaNovo, AdaNovo and $\pi$-HelixNovo are integrated into our framework. In addition to amino acid-level and peptide-level precision and recall, we evaluate the models' performance in terms of identifying post-tranlational modifications (PTMs), efficiency and robustness to peptide length, noise peaks and missing fragment ratio, which are important influencing factors while seldom be considered. Leveraging this benchmark, we conduct a large-scale study of current methods, report many insightful findings that open up new possibilities for future development.
Related papers
- MeToken: Uniform Micro-environment Token Boosts Post-Translational Modification Prediction [65.33218256339151]
Post-translational modifications (PTMs) profoundly expand the complexity and functionality of the proteome.
Existing computational approaches predominantly focus on protein sequences to predict PTM sites, driven by the recognition of sequence-dependent motifs.
We introduce the MeToken model, which tokenizes the micro-environment of each acid, integrating both sequence and structural information into unified discrete tokens.
arXiv Detail & Related papers (2024-11-04T07:14:28Z) - AdaNovo: Adaptive \emph{De Novo} Peptide Sequencing with Conditional Mutual Information [46.23980841020632]
We propose AdaNovo, a novel framework that calculates conditional mutual information (CMI) between the spectrum and each amino acid/peptide.
AdaNovo excels in identifying amino acids with post-translational modifications (PTMs) and exhibits robustness against data noise.
arXiv Detail & Related papers (2024-03-09T11:54:58Z) - Transformer-based de novo peptide sequencing for data-independent acquisition mass spectrometry [1.338778493151964]
We introduce DiaTrans, a deep-learning model based on transformer architecture.
It deciphers peptide sequences from DIA mass spectrometry data.
Our results show significant improvements over existing STOA methods.
arXiv Detail & Related papers (2024-02-17T19:04:23Z) - ContraNovo: A Contrastive Learning Approach to Enhance De Novo Peptide
Sequencing [70.12220342151113]
ContraNovo is a pioneering algorithm that leverages contrastive learning to extract the relationship between spectra and peptides.
ContraNovo consistently outshines contemporary state-of-the-art solutions.
arXiv Detail & Related papers (2023-12-18T12:49:46Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
The ability to precisely predict protein thermostability is pivotal for various subfields and applications in biochemistry.
We introduce an ESM-assisted efficient approach that integrates protein sequence and structural features to predict the thermostability changes in protein upon single-point mutations.
arXiv Detail & Related papers (2023-12-07T03:25:49Z) - Efficient Prediction of Peptide Self-assembly through Sequential and
Graphical Encoding [57.89530563948755]
This work provides a benchmark analysis of peptide encoding with advanced deep learning models.
It serves as a guide for a wide range of peptide-related predictions such as isoelectric points, hydration free energy, etc.
arXiv Detail & Related papers (2023-07-17T00:43:33Z) - DePS: An improved deep learning model for de novo peptide sequencing [7.468176246958974]
In this study, we proposed an enhanced model, DePS, which can improve the accuracy of de novo peptide sequencing.
For the same test set of DeepNovoV2, the DePS model achieved excellent results of 74.22%, 74.21% and 41.68% for amino acid recall, amino acid precision and peptide recall respectively.
arXiv Detail & Related papers (2022-03-16T16:45:48Z) - PointIso: Point Cloud Based Deep Learning Model for Detecting
Arbitrary-Precision Peptide Features in LC-MS Map through Attention Based
Segmentation [5.495506445661776]
PointIso is a point cloud based, arbitrary-precision deep learning network to address the problem of peptide feature detection.
It achieves 98% detection of high quality MS/MS identifications in a benchmark dataset.
arXiv Detail & Related papers (2020-09-15T17:34:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.