Reframing linguistic bootstrapping as joint inference using visually-grounded grammar induction models
- URL: http://arxiv.org/abs/2406.11977v1
- Date: Mon, 17 Jun 2024 18:01:06 GMT
- Title: Reframing linguistic bootstrapping as joint inference using visually-grounded grammar induction models
- Authors: Eva Portelance, Siva Reddy, Timothy J. O'Donnell,
- Abstract summary: Semantic and syntactic bootstrapping posit that children use their prior knowledge of one linguistic domain, say syntactic relations, to help later acquire another, such as the meanings of new words.
Here, we argue that they are instead both contingent on a more general learning strategy for language acquisition: joint learning.
Using a series of neural visually-grounded grammar induction models, we demonstrate that both syntactic and semantic bootstrapping effects are strongest when syntax and semantics are learnt simultaneously.
- Score: 31.006803764376475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic and syntactic bootstrapping posit that children use their prior knowledge of one linguistic domain, say syntactic relations, to help later acquire another, such as the meanings of new words. Empirical results supporting both theories may tempt us to believe that these are different learning strategies, where one may precede the other. Here, we argue that they are instead both contingent on a more general learning strategy for language acquisition: joint learning. Using a series of neural visually-grounded grammar induction models, we demonstrate that both syntactic and semantic bootstrapping effects are strongest when syntax and semantics are learnt simultaneously. Joint learning results in better grammar induction, realistic lexical category learning, and better interpretations of novel sentence and verb meanings. Joint learning makes language acquisition easier for learners by mutually constraining the hypotheses spaces for both syntax and semantics. Studying the dynamics of joint inference over many input sources and modalities represents an important new direction for language modeling and learning research in both cognitive sciences and AI, as it may help us explain how language can be acquired in more constrained learning settings.
Related papers
- Learning Language Structures through Grounding [8.437466837766895]
We consider a family of machine learning tasks that aim to learn language structures through grounding.
In Part I, we consider learning syntactic parses through visual grounding.
In Part II, we propose two execution-aware methods to map sentences into corresponding semantic structures.
In Part III, we propose methods that learn language structures from annotations in other languages.
arXiv Detail & Related papers (2024-06-14T02:21:53Z) - Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations [15.394018604836774]
We introduce a trial-and-demonstration (TnD) learning framework that incorporates three components: student trials, teacher demonstrations, and a reward conditioned on language competence.
Our experiments reveal that the TnD approach accelerates word acquisition for student models of equal or smaller numbers of parameters.
Our findings suggest that interactive language learning, with teacher demonstrations and student trials, can facilitate efficient word learning in language models.
arXiv Detail & Related papers (2024-05-22T16:57:02Z) - Lexicon-Level Contrastive Visual-Grounding Improves Language Modeling [47.7950860342515]
LexiContrastive Grounding (LCG) is a grounded language learning procedure that leverages visual supervision to improve textual representations.
LCG outperforms standard language-only models in learning efficiency.
It improves upon vision-and-language learning procedures including CLIP, GIT, Flamingo, and Vokenization.
arXiv Detail & Related papers (2024-03-21T16:52:01Z) - Pixel Sentence Representation Learning [67.4775296225521]
In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process.
We employ visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to be perceived as continuous.
Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision.
arXiv Detail & Related papers (2024-02-13T02:46:45Z) - Human Inspired Progressive Alignment and Comparative Learning for
Grounded Word Acquisition [6.47452771256903]
We take inspiration from how human babies acquire their first language, and developed a computational process for word acquisition through comparative learning.
Motivated by cognitive findings, we generated a small dataset that enables the computation models to compare the similarities and differences of various attributes.
We frame the acquisition of words as not only the information filtration process, but also as representation-symbol mapping.
arXiv Detail & Related papers (2023-07-05T19:38:04Z) - BabySLM: language-acquisition-friendly benchmark of self-supervised
spoken language models [56.93604813379634]
Self-supervised techniques for learning speech representations have been shown to develop linguistic competence from exposure to speech without the need for human labels.
We propose a language-acquisition-friendly benchmark to probe spoken language models at the lexical and syntactic levels.
We highlight two exciting challenges that need to be addressed for further progress: bridging the gap between text and speech and between clean speech and in-the-wild speech.
arXiv Detail & Related papers (2023-06-02T12:54:38Z) - A Linguistic Investigation of Machine Learning based Contradiction
Detection Models: An Empirical Analysis and Future Perspectives [0.34998703934432673]
We analyze two Natural Language Inference data sets with respect to their linguistic features.
The goal is to identify those syntactic and semantic properties that are particularly hard to comprehend for a machine learning model.
arXiv Detail & Related papers (2022-10-19T10:06:03Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations, both autoregressive and masked language models learn to emulate semantic relations between expressions.
Turning to natural language, our experiments with a specific phenomenon -- referential opacity -- add to the growing body of evidence that current language models do not well-represent natural language semantics.
arXiv Detail & Related papers (2022-10-14T02:35:19Z) - What Artificial Neural Networks Can Tell Us About Human Language
Acquisition [47.761188531404066]
Rapid progress in machine learning for natural language processing has the potential to transform debates about how humans learn language.
To increase the relevance of learnability results from computational models, we need to train model learners without significant advantages over humans.
arXiv Detail & Related papers (2022-08-17T00:12:37Z) - Syntactic Persistence in Language Models: Priming as a Window into
Abstract Language Representations [0.38498574327875945]
We investigate the extent to which modern, neural language models are susceptible to syntactic priming.
We introduce a novel metric and release Prime-LM, a large corpus where we control for various linguistic factors which interact with priming strength.
We report surprisingly strong priming effects when priming with multiple sentences, each with different words and meaning but with identical syntactic structure.
arXiv Detail & Related papers (2021-09-30T10:38:38Z) - Where New Words Are Born: Distributional Semantic Analysis of Neologisms
and Their Semantic Neighborhoods [51.34667808471513]
We investigate the importance of two factors, semantic sparsity and frequency growth rates of semantic neighbors, formalized in the distributional semantics paradigm.
We show that both factors are predictive word emergence although we find more support for the latter hypothesis.
arXiv Detail & Related papers (2020-01-21T19:09:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.