Large Scale Transfer Learning for Tabular Data via Language Modeling
- URL: http://arxiv.org/abs/2406.12031v1
- Date: Mon, 17 Jun 2024 18:58:20 GMT
- Title: Large Scale Transfer Learning for Tabular Data via Language Modeling
- Authors: Josh Gardner, Juan C. Perdomo, Ludwig Schmidt,
- Abstract summary: We present TabuLa-8B, a language model for tabular prediction.
We show that TabuLa-8B has zero-shot accuracy on unseen tables that is over 15 percentage points (pp) higher than random guessing.
We release our model, code, and data along with the publication of this paper.
- Score: 30.44823668480631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tabular data -- structured, heterogeneous, spreadsheet-style data with rows and columns -- is widely used in practice across many domains. However, while recent foundation models have reduced the need for developing task-specific datasets and predictors in domains such as language modeling and computer vision, this transfer learning paradigm has not had similar impact in the tabular domain. In this work, we seek to narrow this gap and present TabuLa-8B, a language model for tabular prediction. We define a process for extracting a large, high-quality training dataset from the TabLib corpus, proposing methods for tabular data filtering and quality control. Using the resulting dataset, which comprises over 1.6B rows from 3.1M unique tables, we fine-tune a Llama 3-8B large language model (LLM) for tabular data prediction (classification and binned regression) using a novel packing and attention scheme for tabular prediction. Through evaluation across a test suite of 329 datasets, we find that TabuLa-8B has zero-shot accuracy on unseen tables that is over 15 percentage points (pp) higher than random guessing, a feat that is not possible with existing state-of-the-art tabular prediction models (e.g. XGBoost, TabPFN). In the few-shot setting (1-32 shots), without any fine-tuning on the target datasets, TabuLa-8B is 5-15 pp more accurate than XGBoost and TabPFN models that are explicitly trained on equal, or even up to 16x more data. We release our model, code, and data along with the publication of this paper.
Related papers
- LaTable: Towards Large Tabular Models [63.995130144110156]
Tabular generative foundation models are hard to build due to the heterogeneous feature spaces of different datasets.
LaTable is a novel diffusion model that addresses these challenges and can be trained across different datasets.
We find that LaTable outperforms baselines on in-distribution generation, and that finetuning LaTable can generate out-of-distribution datasets better with fewer samples.
arXiv Detail & Related papers (2024-06-25T16:03:50Z) - Tokenize features, enhancing tables: the FT-TABPFN model for tabular classification [13.481699494376809]
FT-TabPFN is an enhanced version of TabPFN that includes a novel Feature Tokenization layer to better handle classification features.
Our full source code is available for community use and development.
arXiv Detail & Related papers (2024-06-11T02:13:46Z) - 4DBInfer: A 4D Benchmarking Toolbox for Graph-Centric Predictive Modeling on Relational DBs [67.47600679176963]
RDBs store vast amounts of rich, informative data spread across interconnected tables.
The progress of predictive machine learning models falls behind advances in other domains such as computer vision or natural language processing.
We explore a class of baseline models predicated on converting multi-table datasets into graphs.
We assemble a diverse collection of large-scale RDB datasets and (ii) coincident predictive tasks.
arXiv Detail & Related papers (2024-04-28T15:04:54Z) - Making Pre-trained Language Models Great on Tabular Prediction [50.70574370855663]
The transferability of deep neural networks (DNNs) has made significant progress in image and language processing.
We present TP-BERTa, a specifically pre-trained LM for tabular data prediction.
A novel relative magnitude tokenization converts scalar numerical feature values to finely discrete, high-dimensional tokens, and an intra-feature attention approach integrates feature values with the corresponding feature names.
arXiv Detail & Related papers (2024-03-04T08:38:56Z) - In-Context Data Distillation with TabPFN [11.553950697974825]
In-context data distillation (ICD) is a novel methodology that effectively eliminates these constraints by optimizing TabPFN's context.
ICD efficiently enables TabPFN to handle significantly larger datasets with a fixed memory budget, improving TabPFN's quadratic memory complexity but at the cost of a linear number of tuning steps.
arXiv Detail & Related papers (2024-02-10T15:23:45Z) - Training-Free Generalization on Heterogeneous Tabular Data via
Meta-Representation [67.30538142519067]
We propose Tabular data Pre-Training via Meta-representation (TabPTM)
A deep neural network is then trained to associate these meta-representations with dataset-specific classification confidences.
Experiments validate that TabPTM achieves promising performance in new datasets, even under few-shot scenarios.
arXiv Detail & Related papers (2023-10-31T18:03:54Z) - UniPredict: Large Language Models are Universal Tabular Classifiers [33.811778526930745]
This paper exploits the idea of building universal tabular data predictors based on generative modeling, namely UniPredict.
We train a single LLM on an aggregation of 169 datasets with diverse targets and compare its performance against baselines that are trained on each dataset separately.
We observe this versatile UniPredict model demonstrates an advantage over other models, ranging from 5.4% to 13.4%, when compared with the best tree-boosting baseline and the best neural network baseline.
arXiv Detail & Related papers (2023-10-05T02:37:09Z) - Generative Table Pre-training Empowers Models for Tabular Prediction [71.76829961276032]
We propose TapTap, the first attempt that leverages table pre-training to empower models for tabular prediction.
TapTap can generate high-quality synthetic tables to support various applications, including privacy protection, low resource regime, missing value imputation, and imbalanced classification.
It can be easily combined with various backbone models, including LightGBM, Multilayer Perceptron (MLP) and Transformer.
arXiv Detail & Related papers (2023-05-16T06:37:38Z) - TabLLM: Few-shot Classification of Tabular Data with Large Language
Models [66.03023402174138]
We study the application of large language models to zero-shot and few-shot classification.
We evaluate several serialization methods including templates, table-to-text models, and large language models.
This approach is also competitive with strong traditional baselines like gradient-boosted trees.
arXiv Detail & Related papers (2022-10-19T17:08:13Z) - PTab: Using the Pre-trained Language Model for Modeling Tabular Data [5.791972449406902]
Recent studies show that neural-based models are effective in learning contextual representation for Tabular data.
We propose a novel framework PTab, using the Pre-trained language model to model Tabular data.
Our method has achieved a better average AUC score in supervised settings compared to the state-of-the-art baselines.
arXiv Detail & Related papers (2022-09-15T08:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.