ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models
- URL: http://arxiv.org/abs/2406.12044v2
- Date: Mon, 9 Sep 2024 20:26:49 GMT
- Title: ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models
- Authors: Jianyi Zhang, Yufan Zhou, Jiuxiang Gu, Curtis Wigington, Tong Yu, Yiran Chen, Tong Sun, Ruiyi Zhang,
- Abstract summary: We introduce a new framework named ARTIST to focus on the learning of text structures.
We finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model.
Empirical results on the MARIO-Eval benchmark underscore the effectiveness of the proposed method, showing an improvement of up to 15% in various metrics.
- Score: 52.23899502520261
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion models have demonstrated exceptional capabilities in generating a broad spectrum of visual content, yet their proficiency in rendering text is still limited: they often generate inaccurate characters or words that fail to blend well with the underlying image. To address these shortcomings, we introduce a new framework named ARTIST. This framework incorporates a dedicated textual diffusion model to specifically focus on the learning of text structures. Initially, we pretrain this textual model to capture the intricacies of text representation. Subsequently, we finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model. This disentangled architecture design and the training strategy significantly enhance the text rendering ability of the diffusion models for text-rich image generation. Additionally, we leverage the capabilities of pretrained large language models to better interpret user intentions, contributing to improved generation quality. Empirical results on the MARIO-Eval benchmark underscore the effectiveness of the proposed method, showing an improvement of up to 15\% in various metrics.
Related papers
- Conditional Text-to-Image Generation with Reference Guidance [81.99538302576302]
This paper explores using additional conditions of an image that provides visual guidance of the particular subjects for diffusion models to generate.
We develop several small-scale expert plugins that efficiently endow a Stable Diffusion model with the capability to take different references.
Our expert plugins demonstrate superior results than the existing methods on all tasks, each containing only 28.55M trainable parameters.
arXiv Detail & Related papers (2024-11-22T21:38:51Z) - Empowering Backbone Models for Visual Text Generation with Input Granularity Control and Glyph-Aware Training [68.41837295318152]
Diffusion-based text-to-image models have demonstrated impressive achievements in diversity and aesthetics but struggle to generate images with visual texts.
Existing backbone models have limitations such as misspelling, failing to generate texts, and lack of support for Chinese text.
We propose a series of methods, aiming to empower backbone models to generate visual texts in English and Chinese.
arXiv Detail & Related papers (2024-10-06T10:25:39Z) - UDiffText: A Unified Framework for High-quality Text Synthesis in
Arbitrary Images via Character-aware Diffusion Models [25.219960711604728]
This paper proposes a novel approach for text image generation, utilizing a pre-trained diffusion model.
Our approach involves the design and training of a light-weight character-level text encoder, which replaces the original CLIP encoder.
By employing an inference stage refinement process, we achieve a notably high sequence accuracy when synthesizing text in arbitrarily given images.
arXiv Detail & Related papers (2023-12-08T07:47:46Z) - Reason out Your Layout: Evoking the Layout Master from Large Language
Models for Text-to-Image Synthesis [47.27044390204868]
We introduce a novel approach to improving T2I diffusion models using Large Language Models (LLMs) as layout generators.
Our experiments demonstrate significant improvements in image quality and layout accuracy.
arXiv Detail & Related papers (2023-11-28T14:51:13Z) - ControlStyle: Text-Driven Stylized Image Generation Using Diffusion
Priors [105.37795139586075]
We propose a new task for stylizing'' text-to-image models, namely text-driven stylized image generation.
We present a new diffusion model (ControlStyle) via upgrading a pre-trained text-to-image model with a trainable modulation network.
Experiments demonstrate the effectiveness of our ControlStyle in producing more visually pleasing and artistic results.
arXiv Detail & Related papers (2023-11-09T15:50:52Z) - DiffUTE: Universal Text Editing Diffusion Model [32.384236053455]
We propose a universal self-supervised text editing diffusion model (DiffUTE)
It aims to replace or modify words in the source image with another one while maintaining its realistic appearance.
Our method achieves an impressive performance and enables controllable editing on in-the-wild images with high fidelity.
arXiv Detail & Related papers (2023-05-18T09:06:01Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
We propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models.
Our approach can make text-to-image diffusion models easier to use with better user experience.
arXiv Detail & Related papers (2023-05-09T05:48:38Z) - Language Does More Than Describe: On The Lack Of Figurative Speech in
Text-To-Image Models [63.545146807810305]
Text-to-image diffusion models can generate high-quality pictures from textual input prompts.
These models have been trained using text data collected from content-based labelling protocols.
We characterise the sentimentality, objectiveness and degree of abstraction of publicly available text data used to train current text-to-image diffusion models.
arXiv Detail & Related papers (2022-10-19T14:20:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.