A Hierarchical 3D Gaussian Representation for Real-Time Rendering of Very Large Datasets
- URL: http://arxiv.org/abs/2406.12080v1
- Date: Mon, 17 Jun 2024 20:40:18 GMT
- Title: A Hierarchical 3D Gaussian Representation for Real-Time Rendering of Very Large Datasets
- Authors: Bernhard Kerbl, Andréas Meuleman, Georgios Kopanas, Michael Wimmer, Alexandre Lanvin, George Drettakis,
- Abstract summary: We introduce a hierarchy of 3D Gaussians that preserves visual quality for very large scenes.
We offer an efficient Level-of-Detail (LOD) solution for efficient rendering of distant content.
We show results for captured scenes with up to tens of thousands of images with a simple and affordable rig.
- Score: 45.13531064740826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Novel view synthesis has seen major advances in recent years, with 3D Gaussian splatting offering an excellent level of visual quality, fast training and real-time rendering. However, the resources needed for training and rendering inevitably limit the size of the captured scenes that can be represented with good visual quality. We introduce a hierarchy of 3D Gaussians that preserves visual quality for very large scenes, while offering an efficient Level-of-Detail (LOD) solution for efficient rendering of distant content with effective level selection and smooth transitions between levels.We introduce a divide-and-conquer approach that allows us to train very large scenes in independent chunks. We consolidate the chunks into a hierarchy that can be optimized to further improve visual quality of Gaussians merged into intermediate nodes. Very large captures typically have sparse coverage of the scene, presenting many challenges to the original 3D Gaussian splatting training method; we adapt and regularize training to account for these issues. We present a complete solution, that enables real-time rendering of very large scenes and can adapt to available resources thanks to our LOD method. We show results for captured scenes with up to tens of thousands of images with a simple and affordable rig, covering trajectories of up to several kilometers and lasting up to one hour. Project Page: https://repo-sam.inria.fr/fungraph/hierarchical-3d-gaussians/
Related papers
- EVER: Exact Volumetric Ellipsoid Rendering for Real-time View Synthesis [72.53316783628803]
We present Exact Volumetric Ellipsoid Rendering (EVER), a method for real-time differentiable emission-only volume rendering.
Unlike recentization based approach by 3D Gaussian Splatting (3DGS), our primitive based representation allows for exact volume rendering.
We show that our method is more accurate with blending issues than 3DGS and follow-up work on view rendering.
arXiv Detail & Related papers (2024-10-02T17:59:09Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
We propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance.
In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2024-08-07T14:56:34Z) - CityGaussian: Real-time High-quality Large-Scale Scene Rendering with Gaussians [64.6687065215713]
CityGaussian employs a novel divide-and-conquer training approach and Level-of-Detail (LoD) strategy for efficient large-scale 3DGS training and rendering.
Our approach attains state-of-theart rendering quality, enabling consistent real-time rendering of largescale scenes across vastly different scales.
arXiv Detail & Related papers (2024-04-01T14:24:40Z) - SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians [2.2369578015657954]
Implicit neural representation methods have shown impressive advancements in learning 3D scenes from unstructured in-the-wild photo collections.
We introduce a new mechanism to train transient Gaussians to handle the presence of scene occluders in an unsupervised manner.
arXiv Detail & Related papers (2024-03-15T16:00:04Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS [40.94643885302646]
3D Gaussian splatting (3D-GS) has gained popularity in novel-view scene synthesis.
It addresses the challenges of lengthy training times and slow rendering speeds associated with Radiance Neural Fields (NeRFs)
We present a technique utilizing quantized embeddings to significantly reduce per-point memory storage requirements.
arXiv Detail & Related papers (2023-12-07T18:59:55Z) - BerfScene: Bev-conditioned Equivariant Radiance Fields for Infinite 3D
Scene Generation [96.58789785954409]
We propose a practical and efficient 3D representation that incorporates an equivariant radiance field with the guidance of a bird's-eye view map.
We produce large-scale, even infinite-scale, 3D scenes via synthesizing local scenes and then stitching them with smooth consistency.
arXiv Detail & Related papers (2023-12-04T18:56:10Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.