The Role of Spin-Orbit Coupling on the Linear Absorption Spectrum and Intersystem Crossing Rate Coefficients of Ruthenium Polypyridyl Dyes
- URL: http://arxiv.org/abs/2406.12234v1
- Date: Tue, 18 Jun 2024 03:18:49 GMT
- Title: The Role of Spin-Orbit Coupling on the Linear Absorption Spectrum and Intersystem Crossing Rate Coefficients of Ruthenium Polypyridyl Dyes
- Authors: Justin J. Talbot, Thomas P. Cheshire, Stephen J. Cotton, Frances A. Houle, Martin Head-Gordon,
- Abstract summary: Successful use of molecular dyes for solar energy conversion requires efficient charge injection, which in turn requires the formation of states with sufficiently long lifetimes (e.g. triplets)
The molecular structure elements that confer this property can be found, however computational predictions are invaluable to identify structure-property relations for dye sensitizers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The successful use of molecular dyes for solar energy conversion requires efficient charge injection, which in turn requires the formation of states with sufficiently long lifetimes (e.g. triplets). The molecular structure elements that confer this property can be found empirically, however computational predictions using $\textit{ab initio}$ electronic structure methods are invaluable to identify structure-property relations for dye sensitizers. The primary challenge for simulations to elucidate the electronic and nuclear origins of these properties is a spin-orbit interaction which drives transitions between electronic states. In this work, we present a computational analysis of the spin-orbit corrected linear absorption cross sections and intersystem crossing rate coefficients for a derivative set of phosphonated tris(2,2'-bipyridine)ruthenium(2+) dye molecules. After sampling the ground state vibrational distributions, the predicted linear absorption cross sections indicate that the mixture between singlet and triplet states plays a crucial role in defining the line shape of the metal-to-ligand charge transfer bands in these derivatives. Additionally, an analysis of the intersystem crossing rate coefficients suggests that transitions from the singlet into the triplet manifolds are ultrafast with rate coefficients on the order of $10^{13}$ s$^{-1}$ for each dye molecule.
Related papers
- Semi-Hadronic Charge-Parity Violation Interaction Constants in CsAg, FrLi and FrAg molecules [0.0]
We study the nucleon-electron tensor-pseudotensor (Ne-TPT) interaction in candidate molecules for next-generation experimental searches for new sources of charge-parity violation.
The considered molecules are all amenable to assembly from laser-cooled atoms, with the francium-silver (FrAg) molecule previously shown to be the most sensitive to the Schiff moment interaction in this set.
arXiv Detail & Related papers (2024-10-17T15:29:32Z) - Twisted electron impact elastic cross sections of polyatomic molecules: All active electron multicentered approach [0.0]
The target molecule is modeled using multicentered wavefunctions with the correlation consistent quadruple zeta basis set cc-pVQZ.
The electron density is obtained as a function of spatial coordinates and is used to calculate the elastic form factor.
Orientation averaging of the differential cross-section is performed to mimic experimental situations.
arXiv Detail & Related papers (2024-07-29T08:56:08Z) - Cavity-Induced Quantum Interference and Collective Interactions in van
der Waals Systems [0.0]
We show that light-matter hybridization can modify intermolecular interactions and induce new structural order.
Using the van der Waals (vdW) system in an optical cavity as an example, we predict the effects of interference and collectivity in cavity-induced many-body dispersion interactions.
arXiv Detail & Related papers (2023-10-19T16:35:57Z) - Quantum Control of Atom-Ion Charge Exchange via Light-induced Conical
Intersections [66.33913750180542]
Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces.
We predict significant or measurable non-adiabatic effects in an ultracold atom-ion charge-exchange reaction.
In the laser frequency window, where conical interactions are present, the difference in rate coefficients can be as large as $10-9$ cm$3$/s.
arXiv Detail & Related papers (2023-04-15T14:43:21Z) - Simulating Spin-Orbit Coupling With Quasidegenerate N-Electron Valence
Perturbation Theory [77.34726150561087]
We present the first implementation of spin-orbit coupling effects in SO-QDNEVPT2.
The accuracy of these methods is tested for the group 14 and 16 hydrides, 3d and 4d transition metal ions, and two actinide dioxides.
arXiv Detail & Related papers (2022-11-11T20:03:37Z) - Vibrational response functions for multidimensional electronic
spectroscopy in non-adiabatic models [0.0]
We report analytical expressions for the response functions corresponding to a class of model systems.
These are characterized by the coupling between the diabatic electronic states and the vibrational degrees of freedom.
The approach is then applied to the derivation of third-order response functions describing different physical processes.
arXiv Detail & Related papers (2022-10-03T09:46:59Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - Molecular formations and spectra due to electron correlations in
three-electron hybrid double-well qubits [0.0]
Wigner molecules (WMs) form in three-electron hybrid qubits based on GaAs asymmetric double quantum dots.
FCI calculations enable prediction of the energy spectra and the intrinsic spatial and spin structures of the many-body wave functions.
FCI methodology can be straightforwardly extended to treat valleytronic two-band Si/SiGe hybrid qubits.
arXiv Detail & Related papers (2022-04-05T14:28:14Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.