UrbanLLM: Autonomous Urban Activity Planning and Management with Large Language Models
- URL: http://arxiv.org/abs/2406.12360v1
- Date: Tue, 18 Jun 2024 07:41:42 GMT
- Title: UrbanLLM: Autonomous Urban Activity Planning and Management with Large Language Models
- Authors: Yue Jiang, Qin Chao, Yile Chen, Xiucheng Li, Shuai Liu, Gao Cong,
- Abstract summary: UrbanLLM is a problem-solver by decomposing urban-related queries into manageable sub-tasks.
It identifies suitable AI models for each sub-task, and generates comprehensive responses to the given queries.
- Score: 20.069378890478763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Location-based services play an critical role in improving the quality of our daily lives. Despite the proliferation of numerous specialized AI models within spatio-temporal context of location-based services, these models struggle to autonomously tackle problems regarding complex urban planing and management. To bridge this gap, we introduce UrbanLLM, a fine-tuned large language model (LLM) designed to tackle diverse problems in urban scenarios. UrbanLLM functions as a problem-solver by decomposing urban-related queries into manageable sub-tasks, identifying suitable spatio-temporal AI models for each sub-task, and generating comprehensive responses to the given queries. Our experimental results indicate that UrbanLLM significantly outperforms other established LLMs, such as Llama and the GPT series, in handling problems concerning complex urban activity planning and management. UrbanLLM exhibits considerable potential in enhancing the effectiveness of solving problems in urban scenarios, reducing the workload and reliance for human experts.
Related papers
- PARTNR: A Benchmark for Planning and Reasoning in Embodied Multi-agent Tasks [57.89516354418451]
We present a benchmark for Planning And Reasoning Tasks in humaN-Robot collaboration (PARTNR)
We employ a semi-automated task generation pipeline using Large Language Models (LLMs)
We analyze state-of-the-art LLMs on PARTNR tasks, across the axes of planning, perception and skill execution.
arXiv Detail & Related papers (2024-10-31T17:53:12Z) - UrBench: A Comprehensive Benchmark for Evaluating Large Multimodal Models in Multi-View Urban Scenarios [60.492736455572015]
We present UrBench, a benchmark designed for evaluating LMMs in complex multi-view urban scenarios.
UrBench contains 11.6K meticulously curated questions at both region-level and role-level.
Our evaluations on 21 LMMs show that current LMMs struggle in the urban environments in several aspects.
arXiv Detail & Related papers (2024-08-30T13:13:35Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - MetaUrban: An Embodied AI Simulation Platform for Urban Micromobility [52.0930915607703]
Recent advances in Robotics and Embodied AI make public urban spaces no longer exclusive to humans.
Micromobility enabled by AI for short-distance travel in public urban spaces plays a crucial component in the future transportation system.
We present MetaUrban, a compositional simulation platform for the AI-driven urban micromobility research.
arXiv Detail & Related papers (2024-07-11T17:56:49Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.
WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - CityGPT: Empowering Urban Spatial Cognition of Large Language Models [7.40606412920065]
Large language models (LLMs) with powerful language generation and reasoning capabilities have already achieved success in many domains.
However, due to the lacking of physical world's corpus and knowledge during training, they usually fail to solve many real-life tasks in the urban space.
We propose CityGPT, a systematic framework for enhancing the capability of LLMs on understanding urban space and solving the related urban tasks.
arXiv Detail & Related papers (2024-06-20T02:32:16Z) - Towards Urban General Intelligence: A Review and Outlook of Urban
Foundation Models [26.517572366783384]
Recent emergence of foundation models such as ChatGPT marks a revolutionary shift in the fields of machine learning and artificial intelligence.
Despite growing interest in Urban Foundation Models, this burgeoning field faces challenges such as a lack of clear definitions, systematic reviews, and universalizable solutions.
We propose a data-centric taxonomy that categorizes current UFM-related works, based on urban data modalities and types.
arXiv Detail & Related papers (2024-01-30T04:48:16Z) - Large language model empowered participatory urban planning [5.402147437950729]
This research introduces an innovative urban planning approach integrating Large Language Models (LLMs) within the participatory process.
The framework, based on the crafted LLM agent, consists of role-play, collaborative generation, and feedback, solving a community-level land-use task catering to 1000 distinct interests.
arXiv Detail & Related papers (2024-01-24T10:50:01Z) - Urban Generative Intelligence (UGI): A Foundational Platform for Agents
in Embodied City Environment [32.53845672285722]
Urban environments, characterized by their complex, multi-layered networks, face significant challenges in the face of rapid urbanization.
Recent developments in big data, artificial intelligence, urban computing, and digital twins have laid the groundwork for sophisticated city modeling and simulation.
This paper proposes Urban Generative Intelligence (UGI), a novel foundational platform integrating Large Language Models (LLMs) into urban systems.
arXiv Detail & Related papers (2023-12-19T03:12:13Z) - AI Agent as Urban Planner: Steering Stakeholder Dynamics in Urban
Planning via Consensus-based Multi-Agent Reinforcement Learning [8.363841553742912]
We introduce a Consensus-based Multi-Agent Reinforcement Learning framework for real-world land use readjustment.
This framework serves participatory urban planning, allowing diverse intelligent agents as stakeholder representatives to vote for preferred land use types.
By integrating Multi-Agent Reinforcement Learning, our framework ensures that participatory urban planning decisions are more dynamic and adaptive to evolving community needs.
arXiv Detail & Related papers (2023-10-25T17:04:11Z) - JiuZhang 2.0: A Unified Chinese Pre-trained Language Model for
Multi-task Mathematical Problem Solving [77.51817534090789]
We propose textbfJiuZhang2.0, a unified Chinese PLM specially for multi-task mathematical problem solving.
Our idea is to maintain a moderate-sized model and employ the emphcross-task knowledge sharing to improve the model capacity in a multi-task setting.
arXiv Detail & Related papers (2023-06-19T15:45:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.