UAV-based Intelligent Information Systems on Winter Road Safety for Autonomous Vehicles
- URL: http://arxiv.org/abs/2406.12370v1
- Date: Tue, 18 Jun 2024 07:53:37 GMT
- Title: UAV-based Intelligent Information Systems on Winter Road Safety for Autonomous Vehicles
- Authors: Siva Ariram, Veikko Pekkala, Timo Mäenpää, Antti Tikänmaki, Juha Röning,
- Abstract summary: A limited lane width can reduce the capacity of the road and raise the risk of serious accidents involving autonomous vehicles.
In this research, a model that segments and estimates the width of the road from the perspectives of Uncrewed aerial vehicles and autonomous vehicles.
The proposed approach is needed to empower self-driving cars with up-to-date and accurate insights, enhancing their adaptability and decision-making capabilities in winter landscapes.
- Score: 2.1985100893513834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As autonomous vehicles continue to revolutionize transportation, addressing challenges posed by adverse weather conditions, particularly during winter, becomes paramount for ensuring safe and efficient operations. One of the most important aspects of a road safety inspection during adverse weather is when a limited lane width can reduce the capacity of the road and raise the risk of serious accidents involving autonomous vehicles. In this research, a method for improving driving challenges on roads in winter conditions, with a model that segments and estimates the width of the road from the perspectives of Uncrewed aerial vehicles and autonomous vehicles. The proposed approach in this article is needed to empower self-driving cars with up-to-date and accurate insights, enhancing their adaptability and decision-making capabilities in winter landscapes.
Related papers
- A Computer Vision Approach for Autonomous Cars to Drive Safe at Construction Zone [0.0]
A car equipped with an autonomous driving system (ADS) comes with various cutting-edge functionalities such as adaptive cruise control, collision alerts, automated parking, and more.
This paper presents an innovative and highly accurate road obstacle detection model utilizing computer vision technology that can be activated in construction zones and functions under diverse drift conditions.
arXiv Detail & Related papers (2024-09-24T07:11:00Z) - Enhancing Safety for Autonomous Agents in Partly Concealed Urban Traffic Environments Through Representation-Based Shielding [2.9685635948300004]
We propose a novel state representation for Reinforcement Learning (RL) agents centered around the information perceivable by an autonomous agent.
Our findings pave the way for more robust and reliable autonomous navigation strategies.
arXiv Detail & Related papers (2024-07-05T08:34:49Z) - Holistic view of the road transportation system based on real-time data sharing mechanism [9.503118311645515]
This paper constructs a space-time global view of the road traffic system based on a real-time sharing mechanism.
It enables both road users and managers to timely access the driving intentions of nearby vehicles and the real-time status of road infrastructure.
arXiv Detail & Related papers (2024-07-03T15:10:05Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
We propose a reinforcement learning framework that combines risk-sensitive control with an adaptive action space curriculum.
We show that our algorithm is capable of learning high-speed policies for a real-world off-road driving task.
arXiv Detail & Related papers (2024-05-07T23:32:36Z) - Machine Learning-Based Vehicle Intention Trajectory Recognition and
Prediction for Autonomous Driving [0.0]
In March 2016, a Google self-driving car was involved in a minor collision with a bus.
This paper introduces a deep learning-based prediction method for autonomous driving lane change behavior.
It aims to facilitate safe lane changes and thereby improve road safety.
arXiv Detail & Related papers (2024-02-25T09:28:20Z) - Evaluation of Safety Constraints in Autonomous Navigation with Deep
Reinforcement Learning [62.997667081978825]
We compare two learnable navigation policies: safe and unsafe.
The safe policy takes the constraints into the account, while the other does not.
We show that the safe policy is able to generate trajectories with more clearance (distance to the obstacles) and makes less collisions while training without sacrificing the overall performance.
arXiv Detail & Related papers (2023-07-27T01:04:57Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
We introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving.
We design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent.
arXiv Detail & Related papers (2022-03-04T16:14:33Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - A Review of Autonomous Road Vehicle Integrated Approaches to an
Emergency Obstacle Avoidance Maneuver [0.0]
This manuscript highlights systems that are crucial for an emergency obstacle avoidance maneuver (EOAM)
It identifies the state-of-the-art for each of the related systems, while considering the nuances of traveling at highway speeds.
arXiv Detail & Related papers (2021-05-20T01:11:26Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.