Multimer states in multilevel waveguide QED
- URL: http://arxiv.org/abs/2406.12390v1
- Date: Tue, 18 Jun 2024 08:27:41 GMT
- Title: Multimer states in multilevel waveguide QED
- Authors: Jiaming Shi, Alexander N. Poddubny,
- Abstract summary: We study theoretically the interplay of spontaneous emission and interactions for quasistationary eigenstates in a finite periodic array of multilevel atoms coupled to the waveguide.
Our calculations reveal the peculiar multimerization effect driven by the anharmonicity of the atomic potential.
- Score: 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study theoretically the interplay of spontaneous emission and interactions for the multiple-excited quasistationary eigenstates in a finite periodic array of multilevel atoms coupled to the waveguide. We develop an analytical approach to calculate such eigenstates based on the subradiant dimer basis. Our calculations reveal the peculiar multimerization effect driven by the anharmonicity of the atomic potential: while a general eigenstate is an entangled one, there exist eigenstates that are products of dimers, trimers, or tetramers, depending on the size of the system and the fill factor. At half-filling, these product states acquire a periodic structure with all-to-all connections inside each multimer and become the most subradiant ones.
Related papers
- Dressed atom revisited: Hamiltonian-independent treatment of the radiative cascade [0.0]
We show how the general features of the steady-state radiative cascade are affected by the interaction of the dressed atom with propagating radiation modes.
Our findings clarify the general conditions in which a description of the radiative cascade in terms of transition between dressed states is self-consistent.
arXiv Detail & Related papers (2024-09-14T14:46:27Z) - Dynamic population of multiexcitation subradiant states in incoherently
excited atomic arrays [0.0]
We show that a maximal coupling to long-lived subradiant states is achieved if only half of the atoms are initially excited.
In particular, we show that a maximal coupling to long-lived subradiant states is achieved if only half of the atoms are initially excited.
arXiv Detail & Related papers (2022-08-31T18:00:47Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Emergence of solitons from many-body photon bound states in quantum
nonlinear media [0.0]
Solitons are known to occur in the context of atom-light interaction via the well-known semi-classical phenomenon of self-induced transparency (SIT)
quantum few-photon bound states are known to be a ubiquitous phenomenon that arises in different systems.
arXiv Detail & Related papers (2021-09-30T19:07:21Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Classification of three-photon states in waveguide quantum
electrodynamics [77.34726150561087]
We show that the rich interplay of effects from order, chaos to localisation found in two-photon systems extends naturally to three-photon systems.
There also exist interaction-induced localised states unique to three-photon systems such as bound trimers, corner states and trimer edge states.
arXiv Detail & Related papers (2020-12-07T23:41:09Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.