Cycle-Correspondence Loss: Learning Dense View-Invariant Visual Features from Unlabeled and Unordered RGB Images
- URL: http://arxiv.org/abs/2406.12441v1
- Date: Tue, 18 Jun 2024 09:44:56 GMT
- Title: Cycle-Correspondence Loss: Learning Dense View-Invariant Visual Features from Unlabeled and Unordered RGB Images
- Authors: David B. Adrian, Andras Gabor Kupcsik, Markus Spies, Heiko Neumann,
- Abstract summary: We introduce Cycle-Correspondence Loss (CCL) for view-invariant dense descriptor learning.
The key idea is to autonomously detect valid pixel correspondences by attempting to use a prediction over a new image.
Our evaluation shows that we outperform other self-supervised RGB-only methods, and approach performance of supervised methods.
- Score: 8.789674502390378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robot manipulation relying on learned object-centric descriptors became popular in recent years. Visual descriptors can easily describe manipulation task objectives, they can be learned efficiently using self-supervision, and they can encode actuated and even non-rigid objects. However, learning robust, view-invariant keypoints in a self-supervised approach requires a meticulous data collection approach involving precise calibration and expert supervision. In this paper we introduce Cycle-Correspondence Loss (CCL) for view-invariant dense descriptor learning, which adopts the concept of cycle-consistency, enabling a simple data collection pipeline and training on unpaired RGB camera views. The key idea is to autonomously detect valid pixel correspondences by attempting to use a prediction over a new image to predict the original pixel in the original image, while scaling error terms based on the estimated confidence. Our evaluation shows that we outperform other self-supervised RGB-only methods, and approach performance of supervised methods, both with respect to keypoint tracking as well as for a robot grasping downstream task.
Related papers
- With a Little Help from your own Past: Prototypical Memory Networks for
Image Captioning [47.96387857237473]
We devise a network which can perform attention over activations obtained while processing other training samples.
Our memory models the distribution of past keys and values through the definition of prototype vectors.
We demonstrate that our proposal can increase the performance of an encoder-decoder Transformer by 3.7 CIDEr points both when training in cross-entropy only and when fine-tuning with self-critical sequence training.
arXiv Detail & Related papers (2023-08-23T18:53:00Z) - UIA-ViT: Unsupervised Inconsistency-Aware Method based on Vision
Transformer for Face Forgery Detection [52.91782218300844]
We propose a novel Unsupervised Inconsistency-Aware method based on Vision Transformer, called UIA-ViT.
Due to the self-attention mechanism, the attention map among patch embeddings naturally represents the consistency relation, making the vision Transformer suitable for the consistency representation learning.
arXiv Detail & Related papers (2022-10-23T15:24:47Z) - Self-Supervised Equivariant Learning for Oriented Keypoint Detection [35.94215211409985]
We introduce a self-supervised learning framework using rotation-equivariant CNNs to learn to detect robust oriented keypoints.
We propose a dense orientation alignment loss by an image pair generated by synthetic transformations for training a histogram-based orientation map.
Our method outperforms the previous methods on an image matching benchmark and a camera pose estimation benchmark.
arXiv Detail & Related papers (2022-04-19T02:26:07Z) - Semantic keypoint-based pose estimation from single RGB frames [64.80395521735463]
We present an approach to estimating the continuous 6-DoF pose of an object from a single RGB image.
The approach combines semantic keypoints predicted by a convolutional network (convnet) with a deformable shape model.
We show that our approach can accurately recover the 6-DoF object pose for both instance- and class-based scenarios.
arXiv Detail & Related papers (2022-04-12T15:03:51Z) - Data Augmentation for Object Detection via Differentiable Neural
Rendering [71.00447761415388]
It is challenging to train a robust object detector when annotated data is scarce.
Existing approaches to tackle this problem include semi-supervised learning that interpolates labeled data from unlabeled data.
We introduce an offline data augmentation method for object detection, which semantically interpolates the training data with novel views.
arXiv Detail & Related papers (2021-03-04T06:31:06Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - "What's This?" -- Learning to Segment Unknown Objects from Manipulation
Sequences [27.915309216800125]
We present a novel framework for self-supervised grasped object segmentation with a robotic manipulator.
We propose a single, end-to-end trainable architecture which jointly incorporates motion cues and semantic knowledge.
Our method neither depends on any visual registration of a kinematic robot or 3D object models, nor on precise hand-eye calibration or any additional sensor data.
arXiv Detail & Related papers (2020-11-06T10:55:28Z) - Grasp-type Recognition Leveraging Object Affordance [7.227058013536165]
Key challenge in robot teaching is grasp-type recognition with a single RGB image and a target object name.
We propose a simple yet effective pipeline to enhance learning-based recognition by leveraging a prior distribution of grasp types for each object.
arXiv Detail & Related papers (2020-08-26T08:40:27Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z) - Learning Representations by Predicting Bags of Visual Words [55.332200948110895]
Self-supervised representation learning targets to learn convnet-based image representations from unlabeled data.
Inspired by the success of NLP methods in this area, in this work we propose a self-supervised approach based on spatially dense image descriptions.
arXiv Detail & Related papers (2020-02-27T16:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.