Adversarial Multi-dueling Bandits
- URL: http://arxiv.org/abs/2406.12475v2
- Date: Wed, 26 Jun 2024 10:57:40 GMT
- Title: Adversarial Multi-dueling Bandits
- Authors: Pratik Gajane,
- Abstract summary: We introduce the problem of regret in adversarial multi-dueling bandits.
We introduce a novel algorithm, MiDEX (Multi Dueling EXP3), to learn from such preference feedback.
- Score: 0.4467766778351321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the problem of regret minimization in adversarial multi-dueling bandits. While adversarial preferences have been studied in dueling bandits, they have not been explored in multi-dueling bandits. In this setting, the learner is required to select $m \geq 2$ arms at each round and observes as feedback the identity of the most preferred arm which is based on an arbitrary preference matrix chosen obliviously. We introduce a novel algorithm, MiDEX (Multi Dueling EXP3), to learn from such preference feedback that is assumed to be generated from a pairwise-subset choice model. We prove that the expected cumulative $T$-round regret of MiDEX compared to a Borda-winner from a set of $K$ arms is upper bounded by $O((K \log K)^{1/3} T^{2/3})$. Moreover, we prove a lower bound of $\Omega(K^{1/3} T^{2/3})$ for the expected regret in this setting which demonstrates that our proposed algorithm is near-optimal.
Related papers
- Adversarial Combinatorial Bandits with Switching Costs [55.2480439325792]
We study the problem of adversarial bandit with a switching cost $lambda$ for a switch of each selected arm in each round.
We derive lower bounds for the minimax regret and design algorithms to approach them.
arXiv Detail & Related papers (2024-04-02T12:15:37Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Borda Regret Minimization for Generalized Linear Dueling Bandits [65.09919504862496]
We study the Borda regret minimization problem for dueling bandits, which aims to identify the item with the highest Borda score.
We propose a rich class of generalized linear dueling bandit models, which cover many existing models.
Our algorithm achieves an $tildeO(d2/3 T2/3)$ regret, which is also optimal.
arXiv Detail & Related papers (2023-03-15T17:59:27Z) - Dueling Bandits: From Two-dueling to Multi-dueling [40.4378338001229]
We study a general multi-dueling bandit problem, where an agent compares multiple options simultaneously and aims to minimize the regret due to selecting suboptimal arms.
This setting generalizes the traditional two-dueling bandit problem and finds many real-world applications involving subjective feedback on multiple options.
arXiv Detail & Related papers (2022-11-16T22:00:54Z) - Non-Stationary Dueling Bandits [8.298716599039501]
We study the non-stationary dueling bandits problem with $K$ arms, where the time horizon $T$ consists of $M$ stationary segments.
To minimize the accumulated regret, the learner needs to pick the Condorcet winner of each stationary segment as often as possible.
We show a regret bound for the non-stationary case, without requiring knowledge of $M$ or $T$.
arXiv Detail & Related papers (2022-02-02T09:57:35Z) - Combinatorial Bandits without Total Order for Arms [52.93972547896022]
We present a reward model that captures set-dependent reward distribution and assumes no total order for arms.
We develop a novel regret analysis and show an $Oleft(frack2 n log Tepsilonright)$ gap-dependent regret bound as well as an $Oleft(k2sqrtn T log Tright)$ gap-independent regret bound.
arXiv Detail & Related papers (2021-03-03T23:08:59Z) - Adversarial Dueling Bandits [85.14061196945599]
We introduce the problem of regret in Adversarial Dueling Bandits.
The learner has to repeatedly choose a pair of items and observe only a relative binary win-loss' feedback for this pair.
Our main result is an algorithm whose $T$-round regret compared to the emphBorda-winner from a set of $K$ items.
arXiv Detail & Related papers (2020-10-27T19:09:08Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies.
We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB)
arXiv Detail & Related papers (2020-06-17T22:32:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.