A Systematization of the Wagner Framework: Graph Theory Conjectures and Reinforcement Learning
- URL: http://arxiv.org/abs/2406.12667v2
- Date: Tue, 17 Sep 2024 09:42:43 GMT
- Title: A Systematization of the Wagner Framework: Graph Theory Conjectures and Reinforcement Learning
- Authors: Flora Angileri, Giulia Lombardi, Andrea Fois, Renato Faraone, Carlo Metta, Michele Salvi, Luigi Amedeo Bianchi, Marco Fantozzi, Silvia Giulia Galfrè, Daniele Pavesi, Maurizio Parton, Francesco Morandin,
- Abstract summary: Adam Zsolt Wagner proposed an approach to disprove conjectures in graph theory using Reinforcement Learning (RL)
We present four distinct single-player graph-building games employing various RL algorithms.
We also propose a principled approach to select the most suitable neural network architecture for any given conjecture.
- Score: 0.3111424566471946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In 2021, Adam Zsolt Wagner proposed an approach to disprove conjectures in graph theory using Reinforcement Learning (RL). Wagner's idea can be framed as follows: consider a conjecture, such as a certain quantity f(G) < 0 for every graph G; one can then play a single-player graph-building game, where at each turn the player decides whether to add an edge or not. The game ends when all edges have been considered, resulting in a certain graph G_T, and f(G_T) is the final score of the game; RL is then used to maximize this score. This brilliant idea is as simple as innovative, and it lends itself to systematic generalization. Several different single-player graph-building games can be employed, along with various RL algorithms. Moreover, RL maximizes the cumulative reward, allowing for step-by-step rewards instead of a single final score, provided the final cumulative reward represents the quantity of interest f(G_T). In this paper, we discuss these and various other choices that can be significant in Wagner's framework. As a contribution to this systematization, we present four distinct single-player graph-building games. Each game employs both a step-by-step reward system and a single final score. We also propose a principled approach to select the most suitable neural network architecture for any given conjecture, and introduce a new dataset of graphs labeled with their Laplacian spectra. Furthermore, we provide a counterexample for a conjecture regarding the sum of the matching number and the spectral radius, which is simpler than the example provided in Wagner's original paper. The games have been implemented as environments in the Gymnasium framework, and along with the dataset, are available as open-source supplementary materials.
Related papers
- The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
We introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs.
Our observations show that our framework acts as a versatile operator for diverse tasks.
It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth.
arXiv Detail & Related papers (2024-06-18T12:16:00Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - GSINA: Improving Subgraph Extraction for Graph Invariant Learning via
Graph Sinkhorn Attention [52.67633391931959]
Graph invariant learning (GIL) has been an effective approach to discovering the invariant relationships between graph data and its labels.
We propose a novel graph attention mechanism called Graph Sinkhorn Attention (GSINA)
GSINA is able to obtain meaningful, differentiable invariant subgraphs with controllable sparsity and softness.
arXiv Detail & Related papers (2024-02-11T12:57:16Z) - MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
Learning correspondences aims to find correct correspondences from the initial correspondence set with an uneven correspondence distribution and a low inlier rate.
Recent advances usually use graph neural networks (GNNs) to build a single type of graph or stack local graphs into the global one to complete the task.
We propose MGNet to effectively combine multiple complementary graphs.
arXiv Detail & Related papers (2024-01-10T07:58:44Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing.
The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph.
For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain.
arXiv Detail & Related papers (2023-02-08T08:17:43Z) - Multi-armed Bandit Learning on a Graph [0.0]
We study an extension of MAB called the graph bandit, where an agent travels over a graph to maximize the reward collected from different nodes.
We design a learning algorithm, G-UCB, that balances long-term exploration-exploitation using the principle of optimism.
Our proposed algorithm achieves $O(sqrt|S|Tlog(T)+D|S|log T)$ learning regret, where $|S|$ is the number of nodes and $D$ is the diameter of the graph.
arXiv Detail & Related papers (2022-09-20T02:31:42Z) - Arkhipov's theorem, graph minors, and linear system nonlocal games [0.0]
We study the solution groups of graph incidence games in which the underlying linear system is the incidence system of a two-coloured graph.
Arkhipov's theorem states that the graph incidence game of a connected graph has a perfect quantum strategy if and only if it either has a perfect classical strategy, or the graph is nonplanar.
We extend Arkhipov's theorem by showing that, for graph incidence games of connected two-coloured graphs, every quotient closed property of the solution group has a forbidden minor characterization.
arXiv Detail & Related papers (2022-05-10T03:21:38Z) - Kernelized Multiplicative Weights for 0/1-Polyhedral Games: Bridging the
Gap Between Learning in Extensive-Form and Normal-Form Games [76.21916750766277]
We show that the Optimistic Multiplicative Weights Update (OMWU) algorithm can be simulated on the normal-form equivalent of an EFG in linear time per iteration in the game tree size using a kernel trick.
Specifically, KOMWU gives the first algorithm that guarantees at the same time last-iterate convergence.
arXiv Detail & Related papers (2022-02-01T06:28:51Z) - Partial Gromov-Wasserstein Learning for Partial Graph Matching [28.47269200800775]
A partial Gromov-Wasserstein learning framework is proposed for partially matching two graphs.
Our framework can improve the F1 score by at least $20%$ and often much more.
arXiv Detail & Related papers (2020-12-02T14:56:22Z) - Unsupervised Graph Representation by Periphery and Hierarchical
Information Maximization [18.7475578342125]
Invent of graph neural networks has improved the state-of-the-art for both node and the entire graph representation in a vector space.
For the entire graph representation, most of existing graph neural networks are trained on a graph classification loss in a supervised way.
We propose an unsupervised graph neural network to generate a vector representation of an entire graph in this paper.
arXiv Detail & Related papers (2020-06-08T15:50:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.