The Promise of Analog Deep Learning: Recent Advances, Challenges and Opportunities
- URL: http://arxiv.org/abs/2406.12911v1
- Date: Thu, 13 Jun 2024 07:52:33 GMT
- Title: The Promise of Analog Deep Learning: Recent Advances, Challenges and Opportunities
- Authors: Aditya Datar, Pramit Saha,
- Abstract summary: We evaluate and specify the advantages and disadvantages, along with the current progress with regards to deep learning, for analog implementations.
We identify the neural network-based experiments implemented using these hardware devices and discuss comparative performance achieved by the different analog deep learning methods.
Overall, we find that Analog Deep Learning has great potential for future consumer-level applications, but there is still a long road ahead in terms of scalability.
- Score: 2.9312156642007303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Much of the present-day Artificial Intelligence (AI) utilizes artificial neural networks, which are sophisticated computational models designed to recognize patterns and solve complex problems by learning from data. However, a major bottleneck occurs during a device's calculation of weighted sums for forward propagation and optimization procedure for backpropagation, especially for deep neural networks, or networks with numerous layers. Exploration into different methods of implementing neural networks is necessary for further advancement of the area. While a great deal of research into AI hardware in both directions, analog and digital implementation widely exists, much of the existing survey works lacks discussion on the progress of analog deep learning. To this end, we attempt to evaluate and specify the advantages and disadvantages, along with the current progress with regards to deep learning, for analog implementations. In this paper, our focus lies on the comprehensive examination of eight distinct analog deep learning methodologies across multiple key parameters. These parameters include attained accuracy levels, application domains, algorithmic advancements, computational speed, and considerations of energy efficiency and power consumption. We also identify the neural network-based experiments implemented using these hardware devices and discuss comparative performance achieved by the different analog deep learning methods along with an analysis of their current limitations. Overall, we find that Analog Deep Learning has great potential for future consumer-level applications, but there is still a long road ahead in terms of scalability. Most of the current implementations are more proof of concept and are not yet practically deployable for large-scale models.
Related papers
- Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
Neuromorphic computing is an emerging paradigm that confronts this imbalance by computations directly in analog memories.
This work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa.
arXiv Detail & Related papers (2022-12-29T15:10:59Z) - How to Train Your Neural Network: A Comparative Evaluation [1.3654846342364304]
We discuss and compare current state-of-the-art frameworks for large scale distributed deep learning.
We present empirical results comparing their performance on large image and language training tasks.
Based on our results, we discuss algorithmic and implementation portions of each framework which hinder performance.
arXiv Detail & Related papers (2021-11-09T04:24:42Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Comparative Analysis of Polynomial and Rational Approximations of
Hyperbolic Tangent Function for VLSI Implementation [5.429955391775968]
Deep neural networks yield the state-of-the-art results in many computer vision and human machine interface applications such as object detection, speech recognition etc.
Since, these networks are computationally expensive, customized accelerators are designed for achieving the required performance at lower cost and power.
arXiv Detail & Related papers (2020-07-13T07:31:02Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z) - Memristors -- from In-memory computing, Deep Learning Acceleration,
Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired
Computing [25.16076541420544]
Machine learning, particularly in the form of deep learning, has driven most of the recent fundamental developments in artificial intelligence.
Deep learning has been successfully applied in areas such as object/pattern recognition, speech and natural language processing, self-driving vehicles, intelligent self-diagnostics tools, autonomous robots, knowledgeable personal assistants, and monitoring.
This paper reviews the case for a novel beyond CMOS hardware technology, memristors, as a potential solution for the implementation of power-efficient in-memory computing, deep learning accelerators, and spiking neural networks.
arXiv Detail & Related papers (2020-04-30T16:49:03Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.