NTIRE 2024 Challenge on Night Photography Rendering
- URL: http://arxiv.org/abs/2406.13007v1
- Date: Tue, 18 Jun 2024 18:56:25 GMT
- Title: NTIRE 2024 Challenge on Night Photography Rendering
- Authors: Egor Ershov, Artyom Panshin, Oleg Karasev, Sergey Korchagin, Shepelev Lev, Alexandr Startsev, Daniil Vladimirov, Ekaterina Zaychenkova, Nikola Banić, Dmitrii Iarchuk, Maria Efimova, Radu Timofte, Arseniy Terekhin, Shuwei Yue, Yuyang Liu, Minchen Wei, Lu Xu, Chao Zhang, Yasi Wang, Furkan Kınlı, Doğa Yılmaz, Barış Özcan, Furkan Kıraç, Shuai Liu, Jingyuan Xiao, Chaoyu Feng, Hao Wang, Guangqi Shao, Yuqian Zhang, Yibin Huang, Wei Luo, Liming Wang, Xiaotao Wang, Lei Lei, Simone Zini, Claudio Rota, Marco Buzzelli, Simone Bianco, Raimondo Schettini, Jin Guo, Tianli Liu, Mohao Wu, Ben Shao, Qirui Yang, Xianghui Li, Qihua Cheng, Fangpu Zhang, Zhiqiang Xu, Jingyu Yang, Huanjing Yue,
- Abstract summary: The goal of the challenge was to find solutions that process raw camera images taken in nighttime conditions.
The speed of algorithms was also measured alongside the quality of their output.
The top ranking participants' solutions effectively represent the state-of-the-art in nighttime photography rendering.
- Score: 85.05686186795512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a review of the NTIRE 2024 challenge on night photography rendering. The goal of the challenge was to find solutions that process raw camera images taken in nighttime conditions, and thereby produce a photo-quality output images in the standard RGB (sRGB) space. Unlike the previous year's competition, the challenge images were collected with a mobile phone and the speed of algorithms was also measured alongside the quality of their output. To evaluate the results, a sufficient number of viewers were asked to assess the visual quality of the proposed solutions, considering the subjective nature of the task. There were 2 nominations: quality and efficiency. Top 5 solutions in terms of output quality were sorted by evaluation time (see Fig. 1). The top ranking participants' solutions effectively represent the state-of-the-art in nighttime photography rendering. More results can be found at https://nightimaging.org.
Related papers
- Deep RAW Image Super-Resolution. A NTIRE 2024 Challenge Survey [65.2234198408208]
This paper reviews the NTIRE 2024 RAW Image Super-Resolution Challenge, highlighting the proposed solutions and results.
The goal of this challenge is to upscale RAW Bayer images by 2x, considering unknown degradations such as noise and blur.
arXiv Detail & Related papers (2024-04-24T21:51:01Z) - Deep Portrait Quality Assessment. A NTIRE 2024 Challenge Survey [43.57460813800406]
This paper reviews the NTIRE 2024 Portrait Quality Assessment Challenge, highlighting the proposed solutions and results.
This challenge aims to obtain an efficient deep neural network capable of estimating the perceptual quality of real portrait photos.
arXiv Detail & Related papers (2024-04-17T08:15:25Z) - NTIRE 2021 Challenge on Burst Super-Resolution: Methods and Results [116.77874476501913]
Given a noisy burst as input, the task in the challenge was to generate a clean RGB image with 4 times higher resolution.
The challenge contained two tracks; Track 1 evaluating on synthetically generated data, and Track 2 using real-world bursts from mobile camera.
The top-performing methods set a new state-of-the-art for the burst super-resolution task.
arXiv Detail & Related papers (2021-06-07T17:55:28Z) - NTIRE 2021 Challenge on Image Deblurring [111.14036064783835]
We describe the challenge specifics and the evaluation results from the 2 competition tracks with the proposed solutions.
In each competition, there were 338 and 238 registered participants and in the final testing phase, 18 and 17 teams competed.
The winning methods demonstrate the state-of-the-art performance on the image deblurring task with the jointly combined artifacts.
arXiv Detail & Related papers (2021-04-30T09:12:53Z) - NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and
Results [181.2861509946241]
This paper reviews the NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset.
The challenge is a new version of the previous NTIRE 2019 challenge on real image denoising that was based on the SIDD benchmark.
arXiv Detail & Related papers (2020-05-08T15:46:19Z) - NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution: Methods and
Results [240.4967106943687]
This paper reviews the NTIRE 2020 challenge on perceptual extreme super-resolution.
The challenge task was to super-resolve an input image with a magnification factor 16.
The track had 280 registered participants, and 19 teams submitted the final results.
arXiv Detail & Related papers (2020-05-03T11:30:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.