ABNet: Attention BarrierNet for Safe and Scalable Robot Learning
- URL: http://arxiv.org/abs/2406.13025v1
- Date: Tue, 18 Jun 2024 19:37:44 GMT
- Title: ABNet: Attention BarrierNet for Safe and Scalable Robot Learning
- Authors: Wei Xiao, Tsun-Hsuan Wang, Daniela Rus,
- Abstract summary: Barrier-based method is one of the dominant approaches for safe robot learning.
We propose Attention BarrierNet (ABNet) that is scalable to build larger foundational safe models in an incremental manner.
We demonstrate the strength of ABNet in 2D robot obstacle avoidance, safe robot manipulation, and vision-based end-to-end autonomous driving.
- Score: 58.4951884593569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe learning is central to AI-enabled robots where a single failure may lead to catastrophic results. Barrier-based method is one of the dominant approaches for safe robot learning. However, this method is not scalable, hard to train, and tends to generate unstable signals under noisy inputs that are challenging to be deployed for robots. To address these challenges, we propose a novel Attention BarrierNet (ABNet) that is scalable to build larger foundational safe models in an incremental manner. Each head of BarrierNet in the ABNet could learn safe robot control policies from different features and focus on specific part of the observation. In this way, we do not need to one-shotly construct a large model for complex tasks, which significantly facilitates the training of the model while ensuring its stable output. Most importantly, we can still formally prove the safety guarantees of the ABNet. We demonstrate the strength of ABNet in 2D robot obstacle avoidance, safe robot manipulation, and vision-based end-to-end autonomous driving, with results showing much better robustness and guarantees over existing models.
Related papers
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Robotic Control via Embodied Chain-of-Thought Reasoning [86.6680905262442]
Key limitation of learned robot control policies is their inability to generalize outside their training data.
Recent works on vision-language-action models (VLAs) have shown that the use of large, internet pre-trained vision-language models can substantially improve their robustness and generalization ability.
We introduce Embodied Chain-of-Thought Reasoning (ECoT) for VLAs, in which we train VLAs to perform multiple steps of reasoning about plans, sub-tasks, motions, and visually grounded features before predicting the robot action.
arXiv Detail & Related papers (2024-07-11T17:31:01Z) - Safe Reinforcement Learning on the Constraint Manifold: Theory and Applications [21.98309272057848]
We show how we can impose complex safety constraints on learning-based robotics systems in a principled manner.
Our approach is based on the concept of the Constraint Manifold, representing the set of safe robot configurations.
We demonstrate the method's effectiveness in a real-world Robot Air Hockey task.
arXiv Detail & Related papers (2024-04-13T20:55:15Z) - Deception Game: Closing the Safety-Learning Loop in Interactive Robot
Autonomy [7.915956857741506]
Existing safety methods often neglect the robot's ability to learn and adapt at runtime, leading to overly conservative behavior.
This paper proposes a new closed-loop paradigm for synthesizing safe control policies that explicitly account for the robot's evolving uncertainty.
arXiv Detail & Related papers (2023-09-03T20:34:01Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - Reinforcement Learning for Safe Robot Control using Control Lyapunov
Barrier Functions [9.690491406456307]
Reinforcement learning (RL) exhibits impressive performance when managing complicated control tasks for robots.
This paper explores the control Lyapunov barrier function (CLBF) to analyze the safety and reachability solely based on data.
We also proposed the Lyapunov barrier actor-critic (LBAC) to search for a controller that satisfies the data-based approximation of the safety and reachability conditions.
arXiv Detail & Related papers (2023-05-16T20:27:02Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
In this paper, we explore a class of distributional instance segmentation models using latent codes.
For robotic picking applications, we propose a confidence mask method to achieve the high precision necessary.
We show that our method can significantly reduce critical errors in robotic systems, including our newly released dataset of ambiguous scenes.
arXiv Detail & Related papers (2023-05-03T05:57:29Z) - Safe reinforcement learning of dynamic high-dimensional robotic tasks:
navigation, manipulation, interaction [31.553783147007177]
In reinforcement learning, safety is even more fundamental for exploring an environment without causing any damage.
This paper introduces a new formulation of safe exploration for reinforcement learning of various robotic tasks.
Our approach applies to a wide class of robotic platforms and enforces safety even under complex collision constraints learned from data.
arXiv Detail & Related papers (2022-09-27T11:23:49Z) - Safe Reinforcement Learning Using Black-Box Reachability Analysis [20.875010584486812]
Reinforcement learning (RL) is capable of sophisticated motion planning and control for robots in uncertain environments.
To justify widespread deployment, robots must respect safety constraints without sacrificing performance.
We propose a Black-box Reachability-based Safety Layer (BRSL) with three main components.
arXiv Detail & Related papers (2022-04-15T10:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.