Why quantum correlations are shocking
- URL: http://arxiv.org/abs/2406.13040v2
- Date: Wed, 24 Jul 2024 01:52:48 GMT
- Title: Why quantum correlations are shocking
- Authors: Michael J. W. Hall,
- Abstract summary: A simple minimalist argument is given for why some correlations between quantum systems boggle our classical intuition.
The argument relies on two elementary physical assumptions, and recovers the standard experimentally-testable Bell inequality.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A simple minimalist argument is given for why some correlations between quantum systems boggle our classical intuition. The argument relies on two elementary physical assumptions, and recovers the standard experimentally-testable Bell inequality in a form that applies equally well to correlations between six-sided dice and between photon polarizations. The first assumption, that measurement selection in a first lab leaves the measurement statistics in a remote lab invariant (no-signaling), has been empirically verified, and is shown to be equivalent to the existence of a corresponding joint probability distribution for quantities measured in the first lab. The observed violation of the Bell inequality is then equivalent to the failure of a second assumption, that measurement selection in the remote lab leaves such a joint distribution invariant. Indeed, the degree of violation lower-bounds the variation of the joint distribution. It directly follows there are just three possible physical mechanisms underlying such violations -- action-at-a-distance (superluminality), unavoidable common factors linking measurement choice and distant properties (conspiracy), and intrinsically incompatible physical quantities (complementarity). The argument extends to all Bell inequalities, and is briefly compared with other derivations.
Related papers
- Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - Test of transient deviations from Quantum Mechanics in Bell's experiment [41.94295877935867]
The conflict between Quantum Mechanics (QM) and Local Realism is most noticeable in the correlations observed between distant regions of a spatially spread entangled state.
It has been hypothesized that transient deviations (from the values predicted by QM) may be observed if the correlations are measured in a time shorter than L/c.
We present the results of such a test performed on a specially designed optical Bell setup with a distance between stations up to 24 m in straight line.
arXiv Detail & Related papers (2024-04-15T13:01:30Z) - Testing trajectory-based determinism via time probability distributions [44.99833362998488]
Bohmian mechanics (BM) has inherited more predictive power than quantum mechanics (QM)
We introduce a prescription for constructing a flight-time probability distribution within generic trajectory-equipped theories.
We derive probability distributions that are unreachable by QM.
arXiv Detail & Related papers (2024-04-15T11:36:38Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Experimentally adjudicating between different causal accounts of Bell
inequality violations via statistical model selection [0.0]
Bell inequalities follow from a set of seemingly natural assumptions about how to provide a causal model of a Bell experiment.
Two types of causal models that modify some of these assumptions have been proposed.
We seek to adjudicate between these alternatives based on their predictive power.
arXiv Detail & Related papers (2021-07-30T19:33:02Z) - Violations of locality and free choice are equivalent resources in Bell
experiments [0.0]
Bell inequalities rest on three fundamental assumptions: realism, locality, and free choice.
We investigate the extent to which a given assumption needs to be relaxed for the other to hold at all costs.
Despite their disparate character, we show that both assumptions are equally costly.
arXiv Detail & Related papers (2021-05-19T10:04:38Z) - Contextuality-by-Default description of Bell tests: Contextuality as the
rule not as an exception [0.0]
Bell inequalities are used to certify entanglement.
Quantum mechanics and behavioral sciences teach us that random variables measuring the same content may vary.
We prove that this model does not restrict experimenters freedom of choice which is a prerequisite of science.
arXiv Detail & Related papers (2021-04-23T12:30:53Z) - Understanding Generalization in Adversarial Training via the
Bias-Variance Decomposition [39.108491135488286]
We decompose the test risk into its bias and variance components.
We find that the bias increases monotonically with perturbation size and is the dominant term in the risk.
We show that popular explanations for the generalization gap instead predict the variance to be monotonic.
arXiv Detail & Related papers (2021-03-17T23:30:00Z) - Experimental tests of Multiplicative Bell Inequalities [0.7036032466145111]
A new class of multiplicative Bell inequalities originating from a volume game has been proposed.
We experimentally test the Tsirelson bounds of these inequalities using polarisation-entangled photons.
arXiv Detail & Related papers (2020-09-08T18:14:49Z) - Is the Moon there if nobody looks: Bell Inequalities and Physical
Reality [0.0]
The violation of various Bell inequalities may neither justify the quantum nonlocality nor allow for doubt regarding the existence of atoms, electrons and other invisible elementary particles.
arXiv Detail & Related papers (2020-04-29T16:49:16Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.